IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 李宏毅机器学习——梯度下降Gradient Descent -> 正文阅读

[人工智能]李宏毅机器学习——梯度下降Gradient Descent

一、自适应学习率

在梯度下降的过程中,一般情况下,希望开始开始的时候学习率(学习的速度)快一些,后面慢慢接近局部最低的时候,学习率逐渐减小,移动的幅度更小且精确。

(一)普通的梯度下降

学习率的调整受到t和g的影响(g是微分),步长受到初始学习率、当前微分、当前时刻点的影响
在这里插入图片描述

(二)Adagrad

学习率的调整受到微分占比的影响(相当于把t和g整合成了占比这一个统计量),步长受到初始学习率、当前微分占比的影响。
在这里插入图片描述

二、Adagrad的使用场景

适用于单参数模型,这是其最大的缺点。原因有二:

  • 不同参数需要不同的w
  • 多参场景下,步长同时受到一阶导和二阶导的影响,计算复杂

【解决措施】特征缩放,即标准化
x的量纲不同,w对y的影响不同,w对损失函数的影响也不同。所以应该对x进行标准化,从而更新参数更容易且有效率。

三、梯度下降的限制

  • 容易陷入局部极值
  • 还有可能卡在不是极值,但微分值是0的地方
  • 还有可能实际中只是当微分值小于某一个数值就停下来了,但这里只是比较平缓,并不是极值点
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-21 15:22:26  更:2021-08-21 15:22:44 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 18:42:04-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码