IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> nlp入门_task2:gpt -> 正文阅读

[人工智能]nlp入门_task2:gpt

GPT

在这里插入图片描述
语言模型基本上是一个机器学习模型,它可以根据句子的一部分预测下一个词。最著名的语言模型就是手机键盘,它可以根据你输入的内容,提示下一个单词。

GPT2 和语言模型

从这个意义上讲,GPT-2 基本上就是键盘应用程序中预测下一个词的功能,但 GPT-2 比你手机上的键盘 app 更大更复杂。GPT-2 是在一个 40 GB 的名为 WebText 的数据集上训练的,OpenAI 的研究人员从互联网上爬取了这个数据集,作为研究工作的一部分。从存储空间大小方面来比较,我使用的键盘应用程序 SwiftKey,占用了 78 MB 的空间。而最小的 GPT-2 变种,需要 500 MB 的空间来存储它的所有参数。最大的 GPT-2 模型变种是其大小的 13 倍,因此占用的空间可能超过 6.5 GB。

对 GPT-2 进行实验的一个很好的方法是使用 AllenAI GPT-2 Explorer(https://gpt2.apps.allenai.org/?text=Joel is)。它使用 GPT-2 来显示下一个单词的 10 种预测(包括每种预测的分数)。你可以选择一个单词,然后就能看到下一个单词的预测列表,从而生成一篇文章。

语言模型的 Transformer

正如我们在图解 Transformer中看到的,原始的 Transformer 模型是由 Encoder 和 Decoder 组成的,它们都是由 Transformer 堆叠而成的。这种架构是合适的,因为这个模型是用于处理机器翻译的。在机器翻译问题中,Encoder-Decoder 的架构已经在过去成功应用了。

在图解 Transformer中看到的,原始的 Transformer 模型是由 Encoder 和 Decoder 组成的,它们都是由 Transformer 堆叠而成的。这种架构是合适的,因为这个模型是用于处理机器翻译的。在机器翻译问题中,Encoder-Decoder 的架构已经在过去成功应用了。

只使用 Transformer 中的一部分,要么去掉 Encoder,要么去掉 Decoder,并且将它们堆得尽可能高。使用大量的训练文本,并投入大量的计算

与 BERT 的一个不同之处

GPT-2 是使用 Transformer 的 Decoder 模块构建的。另一方面,BERT 是使用 Transformer 的 Encoder 模块构建的。我们将在下一节中研究这种差异。但它们之间的一个重要差异是,GPT-2 和传统的语言模型一样,一次输出一个 token

这些模型的实际工作方式是,在产生每个 token 之后,将这个 token 添加到输入的序列中,形成一个新序列。然后这个新序列成为模型在下一个时间步的输入。这是一种叫“自回归(auto-regression)”的思想。这种做法可以使得 RNN 非常有效。

GPT-2,和后来的一些模型如 TransformerXL 和 XLNet,本质上都是自回归的模型。但 BERT 不是自回归模型。这是一种权衡。去掉了自回归后,BERT 能够整合左右两边的上下文,从而获得更好的结果。XLNet 重新使用了 自回归,同时也找到一种方法能够结合两边的上下文。

Transformer 模块的进化

原始的 Transformer 论文中的 Encoder 模块接受特定长度的输入(如 512 个 token)。如果一个输入序列比这个限制短,我们可以填充序列的其余部分。

Decoder 模块

其次是 Decoder。与 Encoder 相比,它在结构上有一个很小的差异:它有一个层,使得它可以关注来自 Encoder 特定的段。

这里的 Self Attention 层的一个关注差异是,它会屏蔽未来的 token。具体来说,它不像 BERT 那样将单词改为mask,而是通过改变 Self Attention 的计算,阻止来自被计算位置右边的 token。

很重要的一点是,(BERT 使用的)Self Attention 和 (GPT-2 使用的)masked Self Attention 有明确的区别。一个正常的 Self Attention 模块允许一个位置关注到它右边的部分。而 masked Self Attention 阻止了这种情况的发生:

在 Transformer 原始论文发布之后,Generating Wikipedia by Summarizing Long Sequences(https://arxiv.org/pdf/1801.10198.pdf) 提出了另一种能够进行语言建模的 Transformer 模块的布局。这个模型丢弃了 Transformer 的 Encoder。因此,我们可以把这个模型称为 Transformer-Decoder。这种早期的基于 Transformer 的语言模型由 6 个 Decoder 模块组成。

这些 Decoder 模块都是相同的。我已经展开了第一个 Decoder,因此你可以看到它的 Self Attention 层是 masked 的。注意,现在这个模型可以处理多达 4000 个 token–是对原始论文中 512 个 token 的一个大升级。

这些模块和原始的 Decoder 模块非常类似,只是它们去掉了第二个 Self Attention 层。在 Character-Level Language Modeling with Deeper Self-Attention(https://arxiv.org/pdf/1808.04444.pdf) 中使用了类似的结构,来创建一次一个字母/字符的语言模型。

运行一个训练好的 GPT-2 模型的最简单的方法是让它自己生成文本(这在技术上称为 生成无条件样本)。或者,我们可以给它一个提示,让它谈论某个主题(即生成交互式条件样本)。在漫无目的情况下,我们可以简单地给它输入初始 token,并让它开始生成单词(训练好的模型使用 <|endoftext|> 作为初始的 token。我们称之为 )。

模型只有一个输入的 token,因此只有一条活跃路径。token 在所有层中依次被处理,然后沿着该路径生成一个向量。这个向量可以根据模型的词汇表计算出一个分数(模型知道所有的 单词,在 GPT-2 中是 5000 个词)。在这个例子中,我们选择了概率最高的 the。但我们可以把事情搞混–你知道如果一直在键盘 app 中选择建议的单词,它有时候会陷入重复的循环中,唯一的出路就是点击第二个或者第三个建议的单词。同样的事情也会发生在这里,GPT-2 有一个 top-k 参数,我们可以使用这个参数,让模型考虑第一个词(top-k =1)之外的其他词。

请注意,第二条路径是此计算中唯一活动的路径。GPT-2 的每一层都保留了它自己对第一个 token 的解释,而且会在处理第二个 token 时使用它(我们会在接下来关于 Self Attention 的章节中对此进行更详细的介绍)。GPT-2 不会根据第二个 token 重新计算第一个 token。

深入理解 GPT2 的更多细节

让我们更深入地了解模型。首先从输入开始。与之前我们讨论的其他 NLP 模型一样,GPT-2 在嵌入矩阵中查找输入的单词的对应的 embedding 向量–这是我们从训练好的模型中得到的组件之一。

一行都是词的 embedding:这是一个数字列表,可以表示一个词并捕获一些含义。这个列表的大小在不同的 GPT-2 模型中是不同的。最小的模型使用的 embedding 大小是 768

因此在开始时,我们会在嵌入矩阵查找第一个 token 的 embedding。在把这个 embedding 传给模型的第一个模块之前,我们需要融入位置编码,这个位置编码能够指示单词在序列中的顺序。训练好的模型中,有一部分是一个矩阵,这个矩阵包括了 1024 个位置中每个位置的位置编码向量。

在这里,我们讨论了输入单词在传递到第一个 Transformer 模块之前,是如何被处理的。我们还知道,训练好的 GPT-2 包括两个权重矩阵。

把一个单词输入到 Transformer 的第一个模块,意味着寻找这个单词的 embedding,并且添加第一个位置的位置编码向量

在这些层中向上流动

第一个模块现在可以处理 token,首先通过 Self Attention 层,然后通过神经网络层。一旦 Transformer 的第一个模块处理了 token,会得到一个结果向量,这个结果向量会被发送到堆栈的下一个模块处理。每个模块的处理过程都是相同的,不过每个模块都有自己的 Self Attention 和神经网络层。

回顾 Self-Attention

语言严重依赖于上下文。例如,看看下面的第二定律:

机器人第二定律

机器人必须服从人给予 它 的命令,当 该命令 与 第一定律 冲突时例外。
我在句子中高亮了 3 个部分,这些部分的词是用于指代其他的词。如果不结合它们所指的上下文,就无法理解或者处理这些词。当一个模型处理这个句子,它必须能够知道:

它 指的是机器人
该命令 指的是这个定律的前面部分,也就是 人给予 它 的命令
第一定律 指的是机器人第一定律
这就是 Self Attention 所做的事。它在处理某个词之前,将模型对这个词的相关词和关联词的理解融合起来(并输入到一个神经网络)。它通过对句子片段中每个词的相关性打分,并将这些词的表示向量加权求和。

举个例子,下图顶部模块中的 Self Attention 层在处理单词 it 的时候关注到 a robot。它传递给神经网络的向量,是 3 个单词和它们各自分数相乘再相加的和。

Self-Attention 过程

Self-Attention 沿着句子中每个 token 的路径进行处理,主要组成部分包括 3 个向量。

Query:Query 向量是当前单词的表示,用于对其他所有单词(使用这些单词的 key 向量)进行评分。我们只关注当前正在处理的 token 的 query 向量。
Key:Key 向量就像句子中所有单词的标签。它们就是我们在搜索单词时所要匹配的。
Value:Value 向量是实际的单词表示,一旦我们对每个词的相关性进行了评分,我们需要对这些向量进行加权求和,从而表示当前的词。

query 一个粗略的类比是把它看作是在一个文件柜里面搜索,Query 向量是一个便签,上面写着你正在研究的主题,而 Key 向量就像是柜子里的文件夹的标签。当你将便签与标签匹配时,我们取出匹配的那些文件夹的内容,这些内容就是 Value 向量。但是你不仅仅是寻找一个 Value 向量,而是在一系列文件夹里寻找一系列 Value 向量。

将 Value 向量与每个文件夹的 Key 向量相乘,会为每个文件夹产生一个分数(从技术上来讲:就是点积后面跟着 softmax)。

我们将每个 Value 向量乘以对应的分数,然后求和,得到 Self Attention 的输出。

当模型顶部的模块产生输出向量时(这个向量是经过 Self Attention 层和神经网络层得到的),模型会将这个向量乘以嵌入矩阵。

回忆一下,嵌入矩阵中的每一行都对应于模型词汇表中的一个词。这个相乘的结果,被解释为模型词汇表中每个词的分数。

我们可以选择最高分数的 token(top_k=1)。但如果模型可以同时考虑其他词,那么可以得到更好的结果。所以一个更好的策略是把分数作为单词的概率,从整个列表中选择一个单词(这样分数越高的单词,被选中的几率就越高)。一个折中的选择是把 top_k 设置为 40,让模型考虑得分最高的 40 个词。

这样,模型就完成了一次迭代,输出一个单词。模型会继续迭代,直到所有的上下文都已经生成(1024 个 token),或者直到输出了表示句子末尾的 token。

现在我们基本知道了 GPT-2 是如何工作的。如果你想知道 Self Attention 层里面到底发生了什么,那么文章接下来的额外部分就是为你准备的,我添加这个额外的部分,来使用更多可视化解释 Self Attention,以便更加容易讲解后面的 Transformer 模型(TransformerXL 和 XLNet)。

我想在这里指出文中一些过于简化的说法:

我在文中交替使用 token 和 词。但实际上,GPT-2 使用 Byte Pair Encoding 在词汇表中创建 token。这意味着 token 通常是词的一部分。
我们展示的例子是在推理模式下运行。这就是为什么它一次只处理一个 token。在训练时,模型将会针对更长的文本序列进行训练,并且同时处理多个 token。同样,在训练时,模型会处理更大的 batch size,而不是推理时使用的大小为 1 的 batch size。
为了更加方便地说明原理,我在本文的图片中一般会使用行向量。但有些向量实际上是列向量。在代码实现中,你需要注意这些向量的形式。
Transformer 使用了大量的层归一化(layer normalization),这一点是很重要的。我们在图解Transformer中已经提及到了一部分这点,但在这篇文章,我们会更加关注 Self Attention。
有时我需要更多的框来表示一个向量,

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-21 15:22:26  更:2021-08-21 15:23:13 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 23:54:31-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码