IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> text_matching/simbert -> 正文阅读

[人工智能]text_matching/simbert

假设SENT_a和SENT_b是一组相似句,那么在同一个batch中,把[CLS] SENT_a [SEP] SENT_b [SEP][CLS] SENT_b [SEP] SENT_a [SEP]都加入训练,做一个相似句的生成任务,这是Seq2Seq部分。

另一方面,把整个batch内的[CLS]向量都拿出来,得到一个bxd的句向量矩阵V(b是batch_size,d是hidden_size),然后对d维度做l2归一化,得到新的V,然后两两做内积,得到bxv的相似度矩阵VV^T,接着乘以一个scale(我们取了30),并mask掉对角线部分,最后每一行进行softmax,作为一个分类任务训练,每个样本的目标标签是它的相似句(至于自身已经被mask掉)。说白了,就是把batch内所有的非相似样本都当作负样本,借助softmax来增加相似样本的相似度,降低其余样本的相似度。

softmax除了归一化还有有放大的作用
1.语料不咋好,神经网络会自动泛化好的,有什么根据吗?
1.依据是“正确的都是相似的,错误的各有各的错误”,所以当数据足够多时,正确的效应能叠加,错误的效应有可能相互抵消;
在这里插入图片描述

    with paddle.no_grad():
        for batch_data in data_loader:
            query_input_ids, query_token_type_ids, title_input_ids, title_token_type_ids = batch_data
            query_input_ids = paddle.to_tensor(query_input_ids)
            query_token_type_ids = paddle.to_tensor(query_token_type_ids)
            title_input_ids = paddle.to_tensor(title_input_ids)
            title_token_type_ids = paddle.to_tensor(title_token_type_ids)

            vecs_query = model(
                input_ids=query_input_ids, token_type_ids=query_token_type_ids)
            vecs_title = model(
                input_ids=title_input_ids, token_type_ids=title_token_type_ids)
            vecs_query = vecs_query[1].numpy()
            vecs_title = vecs_title[1].numpy()

            vecs_query = vecs_query / (vecs_query**2).sum(axis=1,
                                                          keepdims=True)**0.5
            vecs_title = vecs_title / (vecs_title**2).sum(axis=1,
                                                          keepdims=True)**0.5
            sims = (vecs_query * vecs_title).sum(axis=1)

            results.extend(sims)

        return results

假设SENT_a和SENT_b是一组相似句,那么在同一个batch中,把[CLS] SENT_a [SEP] SENT_b [SEP]和[CLS] SENT_b [SEP] SENT_a [SEP]都加入训练,做一个相似句的生成任务,这是Seq2Seq部分。

另一方面,把整个batch内的[CLS]向量都拿出来,得到一个句向量矩阵V∈Rb×d(b是batch_size,d是hidden_size),然后对d维度做l2归一化,得到V,然后两两做内积,得到b×b的相似度矩阵VV~?,接着乘以一个scale(我们取了30),并mask掉对角线部分,最后每一行进行softmax,作为一个分类任务训练,每个样本的目标标签是它的相似句(至于自身已经被mask掉)。说白了,就是把batch内所有的非相似样本都当作负样本,借助softmax来增加相似样本的相似度,降低其余样本的相似度。

说到底,关键就是“[CLS]的向量事实上就代表着输入的句向量”,所以可以用它来做一些NLU相关的事情。最后的loss是Seq2Seq和相似句分类两部分loss之和。

用到了样本增强,和统一模型的NLG和NLU

在这里插入图片描述
单向MASK
在这里插入图片描述
通过乱序得到双向mask
在这里插入图片描述
在这里插入图片描述
seq2seq mask
每一种mask就能得出一致语言模型的结构,GPT>XLNET>UNILM

苏剑林. (May. 18, 2020). 《鱼与熊掌兼得:融合检索和生成的SimBERT模型 》[Blog post]. Retrieved from https://kexue.fm/archives/7427

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-25 12:12:14  更:2021-08-25 12:12:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 18:41:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码