IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> OpenLayers源码解析9 ol/source/Cluster.js -> 正文阅读

[人工智能]OpenLayers源码解析9 ol/source/Cluster.js

ol/source/Cluster.js

父类

ol/source/Cluster-Cluster

主要功能

聚类点数据源。

参数:VectorSource({})

参数类型说明
distancenumber (defaults to 20)要素在多少像素距离内会被分为一类
sourcemodule:ol/source/Vector~VectorSource数据源

方法

函数名参数源码返回值类型功能
setDistance(distance)distance number 像素距离source/Cluster.js, line 169设定聚类像素距离
/**
 * @module ol/source/Cluster
 */

import EventType from '../events/EventType.js';
import Feature from '../Feature.js';
import GeometryType from '../geom/GeometryType.js';
import Point from '../geom/Point.js';
import VectorSource from './Vector.js';
import {add as addCoordinate, scale as scaleCoordinate} from '../coordinate.js';
import {assert} from '../asserts.js';
import {
  buffer,
  createEmpty,
  createOrUpdateFromCoordinate,
  getCenter,
} from '../extent.js';
import {getUid} from '../util.js';

/**
 * @typedef {Object} Options
 * @property {import("./Source.js").AttributionLike} [attributions] Attributions.
 * @property {number} [distance=20] Distance in pixels within which features will
 * be clustered together.
 * @property {number} [minDistance=0] Minimum distance in pixels between clusters.
 * Will be capped at the configured distance.
 * By default no minimum distance is guaranteed. This config can be used to avoid
 * overlapping icons. As a tradoff, the cluster feature's position will no longer be
 * the center of all its features.
 * @property {function(Feature):Point} [geometryFunction]
 * Function that takes an {@link module:ol/Feature} as argument and returns an
 * {@link module:ol/geom/Point} as cluster calculation point for the feature. When a
 * feature should not be considered for clustering, the function should return
 * `null`. The default, which works when the underlying source contains point
 * features only, is
 * ```js
 * function(feature) {
 *   return feature.getGeometry();
 * }
 * ```
 * See {@link module:ol/geom/Polygon~Polygon#getInteriorPoint} for a way to get a cluster
 * calculation point for polygons.
 * @property {function(Point, Array<Feature>):Feature} [createCluster]
 * Function that takes the cluster's center {@link module:ol/geom/Point} and an array
 * of {@link module:ol/Feature} included in this cluster. Must return a
 * {@link module:ol/Feature} that will be used to render. Default implementation is:
 * ```js
 * function(point, features) {
 *   return new Feature({
 *     geometry: point,
 *     features: features
 *   });
 * }
 * ```
 * @property {VectorSource} [source] Source.
 * @property {boolean} [wrapX=true] Whether to wrap the world horizontally.
 */

/**
 * @classdesc
 * Layer source to cluster vector data. Works out of the box with point
 * geometries. For other geometry types, or if not all geometries should be
 * considered for clustering, a custom `geometryFunction` can be defined.
 *
 * If the instance is disposed without also disposing the underlying
 * source `setSource(null)` has to be called to remove the listener reference
 * from the wrapped source.
 * @api
 */
class Cluster extends VectorSource {
  /**
   * @param {Options} options Cluster options.
   */
  constructor(options) {
    super({
      attributions: options.attributions,
      wrapX: options.wrapX,
    });

    /**
     * @type {number|undefined}
     * @protected
     */
    this.resolution = undefined;

    /**
     * @type {number}
     * @protected
     */
    this.distance = options.distance !== undefined ? options.distance : 20;

    /**
     * @type {number}
     * @protected
     */
    this.minDistance = options.minDistance || 0;

    /**
     * @type {number}
     * @protected
     */
    this.interpolationRatio = 0;

    /**
     * @type {Array<Feature>}
     * @protected
     */
    this.features = [];

    /**
     * @param {Feature} feature Feature.
     * @return {Point} Cluster calculation point.
     * @protected
     */
    this.geometryFunction =
      options.geometryFunction ||
      function (feature) {
        const geometry = feature.getGeometry();
        assert(geometry.getType() == GeometryType.POINT, 10); // The default `geometryFunction` can only handle `Point` geometries
        return geometry;
      };

    /**
     * @type {function(Point, Array<Feature>):Feature}
     * @private
     */
    this.createCustomCluster_ = options.createCluster;

    /**
     * @type {VectorSource}
     * @protected
     */
    this.source = null;

    this.boundRefresh_ = this.refresh.bind(this);

    this.updateDistance(this.distance, this.minDistance);
    this.setSource(options.source || null);
  }

  /**
   * Remove all features from the source.
   * @param {boolean} [opt_fast] Skip dispatching of {@link module:ol/source/Vector.VectorSourceEvent#removefeature} events.
   * @api
   */
  clear(opt_fast) {
    this.features.length = 0;
    super.clear(opt_fast);
  }

  /**
   * Get the distance in pixels between clusters.
   * @return {number} Distance.
   * @api
   */
  getDistance() {
    return this.distance;
  }

  /**
   * Get a reference to the wrapped source.
   * @return {VectorSource} Source.
   * @api
   */
  getSource() {
    return this.source;
  }

  /**
   * @param {import("../extent.js").Extent} extent Extent.
   * @param {number} resolution Resolution.
   * @param {import("../proj/Projection.js").default} projection Projection.
   */
  loadFeatures(extent, resolution, projection) {
    this.source.loadFeatures(extent, resolution, projection);
    if (resolution !== this.resolution) {
      this.resolution = resolution;
      this.refresh();
    }
  }

  /**
   * Set the distance within which features will be clusterd together.
   * @param {number} distance The distance in pixels.
   * @api
   */
  setDistance(distance) {
    this.updateDistance(distance, this.minDistance);
  }

  /**
   * Set the minimum distance between clusters. Will be capped at the
   * configured distance.
   * @param {number} minDistance The minimum distance in pixels.
   * @api
   */
  setMinDistance(minDistance) {
    this.updateDistance(this.distance, minDistance);
  }

  /**
   * The configured minimum distance between clusters.
   * @return {number} The minimum distance in pixels.
   * @api
   */
  getMinDistance() {
    return this.minDistance;
  }

  /**
   * Replace the wrapped source.
   * @param {VectorSource} source The new source for this instance.
   * @api
   */
  setSource(source) {
    if (this.source) {
      this.source.removeEventListener(EventType.CHANGE, this.boundRefresh_);
    }
    this.source = source;
    if (source) {
      source.addEventListener(EventType.CHANGE, this.boundRefresh_);
    }
    this.refresh();
  }

  /**
   * Handle the source changing.
   */
  refresh() {
    this.clear();
    this.cluster();
    this.addFeatures(this.features);
  }

  /**
   * Update the distances and refresh the source if necessary.
   * @param {number} distance The new distance.
   * @param {number} minDistance The new minimum distance.
   */
  updateDistance(distance, minDistance) {
    const ratio =
      distance === 0 ? 0 : Math.min(minDistance, distance) / distance;
    const changed =
      distance !== this.distance || this.interpolationRatio !== ratio;
    this.distance = distance;
    this.minDistance = minDistance;
    this.interpolationRatio = ratio;
    if (changed) {
      this.refresh();
    }
  }

  /**
   * @protected
   */
  cluster() {
    if (this.resolution === undefined || !this.source) {
      return;
    }
    const extent = createEmpty();
    const mapDistance = this.distance * this.resolution;
    const features = this.source.getFeatures();

    /** @type {Object<string, true>} */
    const clustered = {};

    for (let i = 0, ii = features.length; i < ii; i++) {
      const feature = features[i];
      if (!(getUid(feature) in clustered)) {
        const geometry = this.geometryFunction(feature);
        if (geometry) {
          const coordinates = geometry.getCoordinates();
          createOrUpdateFromCoordinate(coordinates, extent);
          buffer(extent, mapDistance, extent);

          const neighbors = this.source
            .getFeaturesInExtent(extent)
            .filter(function (neighbor) {
              const uid = getUid(neighbor);
              if (uid in clustered) {
                return false;
              }
              clustered[uid] = true;
              return true;
            });
          this.features.push(this.createCluster(neighbors, extent));
        }
      }
    }
  }

  /**
   * @param {Array<Feature>} features Features
   * @param {import("../extent.js").Extent} extent The searched extent for these features.
   * @return {Feature} The cluster feature.
   * @protected
   */
  createCluster(features, extent) {
    const centroid = [0, 0];
    for (let i = features.length - 1; i >= 0; --i) {
      const geometry = this.geometryFunction(features[i]);
      if (geometry) {
        addCoordinate(centroid, geometry.getCoordinates());
      } else {
        features.splice(i, 1);
      }
    }
    scaleCoordinate(centroid, 1 / features.length);
    const searchCenter = getCenter(extent);
    const ratio = this.interpolationRatio;
    const geometry = new Point([
      centroid[0] * (1 - ratio) + searchCenter[0] * ratio,
      centroid[1] * (1 - ratio) + searchCenter[1] * ratio,
    ]);
    if (this.createCustomCluster_) {
      return this.createCustomCluster_(geometry, features);
    } else {
      return new Feature({
        geometry,
        features,
      });
    }
  }
}

export default Cluster;
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-25 12:12:14  更:2021-08-25 12:13:45 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 21:43:29-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码