IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 2021CVPR-Multi-attentional Deepfake Detection -> 正文阅读

[人工智能]2021CVPR-Multi-attentional Deepfake Detection

多空间注意深度伪造监测

来自中国科学技术大学,微软云AI

摘要:Deepfake 伪造人脸在互联网上广泛传播,并引起了严重的社会关注。近年来,如何检测此类伪造内容已成为研究热点,并提出了许多深度伪造检测方法。他们中的大多数将 deepfake 检测建模为一个普通的二元分类问题,即首先使用主干网络提取全局特征,然后将其输入到二元分类器(真/假)中。但由于此任务中真假图像之间的差异通常是细微的和局部的,我们认为这种普通的解决方案不是最佳的。在本文中,我们将 deepfake 检测表述为细粒度分类问题,并提出了一种新的多注意 deepfake 检测网络。具体来说,它由三个关键组件组成:1)多个空间注意力头,使网络关注不同的局部部分; 2) 纹理特征增强块放大浅层特征中的细微伪影; 3)聚合由注意力图引导的低级纹理特征和高级语义特征。此外,为了解决该网络的学习困难,我们进一步引入了新的区域独立性损失和注意力引导数据增强策略。通过对不同数据集的大量实验,我们证明了我们的方法优于普通二元分类器对应物,并实现了最先进的性能。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-26 12:06:37  更:2021-08-26 12:09:00 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 18:43:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码