IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> TensorFlow1.x如何使用官方预训练模型 -> 正文阅读

[人工智能]TensorFlow1.x如何使用官方预训练模型


环境:tensorflow1.13
模型:使用vgg19作为例子

注意:本文档的结果是使用CPU模式跑出来的,因为显卡是30系,系统是win10,没法在tf1.13版本下使用GPU模式。所以如果读者使用GPU模式跑出来的结果与本文档有些许出入,应该是正常现象。

文档背景是为了在tensorflow1.x中使用预训练的vgg模型计算vgg loss。

模型下载

官方的预训练模型在tensorflow的model仓库中,完整路径是tensorflow/models/research/slim,请注意选择tf1.13分支:
https://github.com/tensorflow/models/tree/r1.13.0/research/slim

vgg19的模型下载地址:
http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz
解压后文件名是vgg_19.ckpt

辅助函数

在下面的代码中,为了对比不同的模型使用方式是否带来一致的结果,写了一个可视化feature map的辅助函数来方便对比。下面的代码将直接使用,而不再赘述,读者如果想要尝试本文档代码,请自行粘贴过去。

def visualize_feature_map(feature_map,
                          col_nums=None,
                          gap_value=0.5,
                          gap_width=10,
                          gap_height=10):
    """
    Visualize feature map in one image.

    Parameters
    ----------
    feature_map: numpy array, shape is (height, width, channel)
    col_nums: number of feature map columns
    gap_value: value for feature map gap
    gap_width: width of gap
    gap_height: height of gap

    Returns
    -------
    image: image to show feature map
    """
    eps = 1e-6

    if feature_map.ndim == 4:
        if feature_map.shape[0] == 1:
            feature_map = np.squeeze(feature_map)
        else:
            raise ValueError("feature map must be 3 dims ndarray (height, "
                             "width, channel) or 4 dims ndarray whose shape "
                             "must be (1, height, width, channel)")

    # compute col_nums (if not set) and row_nums
    height, width, channel = feature_map.shape
    if col_nums is None:
        col_nums = int(round(np.sqrt(channel)))
    row_nums = int(np.ceil(channel / col_nums))

    # compute final image width and height
    image_width = col_nums * (width + gap_width) - gap_width
    image_height = row_nums * (height + gap_height) - gap_height

    image = np.ones(shape=(image_height, image_width),
                    dtype=feature_map.dtype) * gap_value
    cnt = 0
    while cnt < channel:
        row = cnt // col_nums
        col = cnt % col_nums

        row_beg = row * (height + gap_height)
        row_end = row_beg + height
        col_beg = col * (width + gap_width)
        col_end = col_beg + width

        image[row_beg:row_end, col_beg:col_end] = \
            feature_map[:, :, cnt] / (np.std(feature_map[:, :, cnt]) + eps)
        cnt += 1

    return image

模型使用

有三种典型的方式使用官方模型:

  1. 使用官方提供的模型文件加载模型。
    需要首先使用placeholder在计算图中定义模型,然后使用tf.train.Saver()的restore方法加载模型参数。这种方式要求我们新定义的模型的节点名和参数名必须与vgg_19.ckpt中保存的一致,这也是为什么建议直接使用官方的模型定义文件。

  2. 魔改官方的模型文件。
    在卷积部分,官方的模型文件只提供了relu层的feature map,有时候我们可能需要conv层的feature map,这时候就需要魔改。魔改后的节点名和参数名仍然必须与vgg_19.ckpt中保存的一致。

  3. 使用NewCheckpointReader并自定义模型
    使用pywrap_tensorflow.NewCheckpointReader(model_path)可以读取权重参数,然后自己重新定义模型结构并把权重参数赋值过去。采用这种办法可以灵活定义模型结构和节点名称,但是代码写起来比较麻烦。(官方定义的模型文件只能拿到relu层的feature map,拿不到conv层的,所以灵活性欠佳)

1. 使用官方提供的模型文件加载模型

官方的模型定义文件路径(网址):
https://github.com/tensorflow/models/blob/r1.13.0/research/slim/nets/vgg.py
找到vgg19的定义如下:

def vgg_19(inputs,
           num_classes=1000,
           is_training=True,
           dropout_keep_prob=0.5,
           spatial_squeeze=True,
           scope='vgg_19',
           fc_conv_padding='VALID',
           global_pool=False):
    """
    Oxford Net VGG 19-Layers version E Example.
    Note: All the fully_connected layers have been transformed to conv2d
    layers. To use in classification mode, resize input to 224x224.

    Args:
        inputs: a tensor of size [batch_size, height, width, channels].
        num_classes: number of predicted classes. If 0 or None, the logits
            layer is omitted and the input features to the logits layer are
            returned instead.
        is_training: whether or not the model is being trained.
        dropout_keep_prob: the probability that activations are kept in the
            dropout layers during training.
        spatial_squeeze: whether or not should squeeze the spatial dimensions
            of the outputs. Useful to remove unnecessary dimensions for
            classification.
        scope: Optional scope for the variables.
        fc_conv_padding: the type of padding to use for the fully connected
            layer that is implemented as a convolutional layer. Use 'SAME'
            padding if you are applying the network in a fully convolutional
            manner and want to get a prediction map downsampled by a factor of
            32 as an output. Otherwise, the output prediction map will be
            (input / 32) - 6 in case of 'VALID' padding.
        global_pool: Optional boolean flag. If True, the input to the
            classification layer is avgpooled to size 1x1, for any input size.
            (This is not part of the original VGG architecture.)
    Returns:
        net: the output of the logits layer (if num_classes is a non-zero
            integer), or the non-dropped-out input to the logits layer (if
            num_classes is 0 or None).
        end_points: a dict of tensors with intermediate activations.
    """
    with tf.variable_scope(scope, 'vgg_19', [inputs]) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with slim.arg_scope(
                [slim.conv2d, slim.fully_connected, slim.max_pool2d],
                outputs_collections=end_points_collection):
            net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3],
                              scope='conv1')
            net = slim.max_pool2d(net, [2, 2], scope='pool1')
            net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2')
            net = slim.max_pool2d(net, [2, 2], scope='pool2')
            net = slim.repeat(net, 4, slim.conv2d, 256, [3, 3], scope='conv3')
            net = slim.max_pool2d(net, [2, 2], scope='pool3')
            net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv4')
            net = slim.max_pool2d(net, [2, 2], scope='pool4')
            net = slim.repeat(net, 4, slim.conv2d, 512, [3, 3], scope='conv5')
            net = slim.max_pool2d(net, [2, 2], scope='pool5')

            # Use conv2d instead of fully_connected layers.
            net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding,
                              scope='fc6')
            net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                               scope='dropout6')
            net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
            # Convert end_points_collection into a end_point dict.
            end_points = slim.utils.convert_collection_to_dict(
                end_points_collection)
            if global_pool:
                net = tf.reduce_mean(net, [1, 2], keep_dims=True,
                                     name='global_pool')
                end_points['global_pool'] = net
            if num_classes:
                net = slim.dropout(net, dropout_keep_prob,
                                   is_training=is_training,
                                   scope='dropout7')
                net = slim.conv2d(net, num_classes, [1, 1],
                                  activation_fn=None,
                                  normalizer_fn=None,
                                  scope='fc8')
                if spatial_squeeze:
                    net = tf.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net
            return net, end_points

关于上述模型定义,有两个函数需要稍加解释:

  • slim.conv2d
    slim.conv2d的定义在Pycharm中通过ctrl加单击的方式追进去后发现不对,真正的定义在下面路径的文件中:
    D:\Program\anaconda3\envs\tf13\Lib\site-packages\tensorflow\contrib\layers\python\layers\layers.py
    (请注意D:\Program\anaconda3\envs\tf13是我电脑上tf1.13的环境路径,需要根据自己环境修改)

    其中第1117行的def convolution2d是函数定义及实现,3327行的conv2d = convolution2d起了一个短名字。convolution2d的参数列表中有activation_fn=nn.relu,所以这个卷积默认带有relu作为激活函数。

  • slim.repeat
    作用是把某个算子重复n次。函数实现跟slim.conv2d同一个文件,文件中的函数定义和部分解释如下:

    def repeat(inputs, repetitions, layer, *args, **kwargs):
      """Applies the same layer with the same arguments repeatedly.
    
    y = repeat(x, 3, conv2d, 64, [3, 3], scope='conv1')
    # It is equivalent to:
    
    x = conv2d(x, 64, [3, 3], scope='conv1/conv1_1')
    x = conv2d(x, 64, [3, 3], scope='conv1/conv1_2')
    y = conv2d(x, 64, [3, 3], scope='conv1/conv1_3')
    
    ......
    
    """
    

使用脚本如下,注意其中vgg_19visualize_feature_map两个函数在本文档上面已经出现过,并且比较长,所以下面的脚本中将其省略:

# -*- coding: utf-8 -*-
import os
import cv2
import tensorflow as tf
import numpy as np

os.environ['CUDA_VISIBLE_DEVICES'] = "/gpu:0"
slim = tf.contrib.slim


def vgg_19(inputs,
           num_classes=1000,
           is_training=True,
           dropout_keep_prob=0.5,
           spatial_squeeze=True,
           scope='vgg_19',
           fc_conv_padding='VALID',
           global_pool=False):
    # 见本文档前面
    pass


def visualize_feature_map(feature_map,
                          col_nums=None,
                          gap_value=0.5,
                          gap_width=10,
                          gap_height=10):
    # 见本文档前面
    pass


def main():
    image_file = r'E:\images\lena512color.tiff'
    model_path = r'E:\pretrained_model\tf1x\vgg_19.ckpt'
    inputs_ = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])
    outputs, feature_map_dict = vgg_19(inputs_,
                                       num_classes=0,
                                       is_training=False,
                                       global_pool=True)

    # print trainable variables
    for var in tf.trainable_variables():
        print(var)

    # load pretrained model
    saver = tf.train.Saver()
    sess = tf.Session()
    saver.restore(sess, model_path)

    # running test
    inputs = cv2.imread(image_file)
    inputs = np.expand_dims(inputs, axis=0)
    out, feature_maps = sess.run([outputs, feature_map_dict],
                                 feed_dict={
                                     inputs_: inputs,
                                 })

    # print shape of feature maps
    for key in feature_maps.keys():
        print(key, feature_maps.get(key).shape)

    feature_map = feature_maps.get('vgg_19/conv3/conv3_4')
    feature_map = np.squeeze(feature_map)
    image = visualize_feature_map(feature_map)
    image = np.clip(image * 255, 0, 255).astype(np.uint8)
    # cv2.imwrite('lena_feature_map_vgg_conv3_4.png', image)

    # print statistics for feature map
    for i in range(5):
        mean_val = np.mean(feature_map[:, :, i])
        std = np.std(feature_map[:, :, i])
        min_val = np.min(feature_map[:, :, i])
        max_val = np.max(feature_map[:, :, i])
        print(i + 1, " min=%.4f, max=%.4f, mean=%.4f, std=%.4f" % (
            min_val, max_val, mean_val, std))

    # print part of final global feature vector
    feature_vec = feature_maps.get('global_pool')
    feature_vec = np.squeeze(feature_vec)
    for i in range(10):
        print(feature_vec[i])


if __name__ == '__main__':
    main()

对上述脚本需要做如下说明:

  1. vgg_19的参数设置需要多加注意。
    如果只是做推理的话,is_training一定要设置成False;
    我使用的目的是为了计算vgg loss,所以不需要全连接的部分,因此为了使全连接部分不要报错,把num_classes设置成0,并且global_pool设置为True。

  2. 使用placeholder创建计算图以后才能restore权重。
    脚本在计算图和restore权重的中间部分(# print trainable variables部分)打印了权重变量,包括名称,shape,dtype。

    <tf.Variable 'vgg_19/conv1/conv1_1/weights:0' shape=(3, 3, 3, 64) dtype=float32_ref>
    <tf.Variable 'vgg_19/conv1/conv1_1/biases:0' shape=(64,) dtype=float32_ref>
    <tf.Variable 'vgg_19/conv1/conv1_2/weights:0' shape=(3, 3, 64, 64) dtype=float32_ref>
    <tf.Variable 'vgg_19/conv1/conv1_2/biases:0' shape=(64,) dtype=float32_ref>
    <tf.Variable 'vgg_19/conv2/conv2_1/weights:0' shape=(3, 3, 64, 128) dtype=float32_ref>
    <tf.Variable 'vgg_19/conv2/conv2_1/biases:0' shape=(128,) dtype=float32_ref>
    ......
    
  3. vgg_19的输出有两个。
    第一个很容易理解,就是网络推理的输出,但对于计算vgg loss而言没有用。
    第二个输出以dict的形式保存了网络的feature map,dict的key是feature map的节点名,value是feature map的数值,这是计算vgg loss真正需要的东西。在# print shape of feature maps部分打印了feature map的name和shape,另外还把conv3_4画在一张图上,用于一些简单直观的测试和检查。

    vgg_19/conv1/conv1_1 (1, 512, 512, 64)
    vgg_19/conv1/conv1_2 (1, 512, 512, 64)
    vgg_19/pool1 (1, 256, 256, 64)
    vgg_19/conv2/conv2_1 (1, 256, 256, 128)
    vgg_19/conv2/conv2_2 (1, 256, 256, 128)
    vgg_19/pool2 (1, 128, 128, 128)
    ......
    
  4. 打印feature map的一些统计数值,可以检查并确认以下事实 :
    feature map只有relu,没有conv,因为feature map的最小值都是0.0;
    vgg出现在BN之前,所以网络中没有BN,导致feature map的数值很大(如果有BN的话数值一般不会超过5),因此计算vgg loss时根据具体情况一般需要乘上一个很小的权重系数。

    1  min=0.0000, max=9201.5811, mean=386.3745, std=737.3252
    2  min=0.0000, max=7389.5913, mean=1412.0540, std=616.6437
    3  min=0.0000, max=3323.7239, mean=400.2662, std=522.4063
    4  min=0.0000, max=4319.3765, mean=369.9904, std=644.4222
    5  min=0.0000, max=8997.2305, mean=905.1512, std=1288.8953
    ......
    
  5. 打印一部分最后的feature vector,用于魔改模型定义函数后检查正确性:

    0.00055606366
    0.0
    0.0
    0.15579844
    0.0
    1.0548652
    0.0
    0.0
    0.05207316
    0.29752082
    ......
    

2. 魔改官方的模型文件

魔改后的模型和测试代码如下,同样visualize_feature_map需要从上面粘贴过来:

# -*- coding: utf-8 -*-
import os
import cv2
import tensorflow as tf
import numpy as np

slim = tf.contrib.slim


def vgg19(inputs,
          num_classes=1000,
          is_training=True,
          dropout_keep_prob=0.5,
          spatial_squeeze=True,
          scope='vgg_19',
          fc_conv_padding='VALID',
          global_pool=False):
    with tf.variable_scope(scope, 'vgg_19', [inputs]) as sc:
        end_points_collection = sc.original_name_scope + '_end_points'
        # Collect outputs for conv2d, fully_connected and max_pool2d.
        with slim.arg_scope(
                [slim.conv2d, slim.fully_connected, slim.max_pool2d],
                outputs_collections=end_points_collection):
            # conv blocks are modified as follows
            net_config = [
                [64, 2],
                [128, 2],
                [256, 4],
                [512, 4],
                [512, 4],
            ]  # [filters, blocks]

            net = inputs
            relu_dict = {}
            for i, config in enumerate(net_config):
                filters = config[0]
                for j in range(config[1]):
                    conv_scope = 'conv%d/conv%d_%d' % (i + 1, i + 1, j + 1)
                    relu_name = 'conv%d/relu%d_%d' % (i + 1, i + 1, j + 1)
                    net = slim.conv2d(net, filters, [3, 3],
                                      activation_fn=None,
                                      scope=conv_scope)
                    net = tf.nn.relu(net, name=relu_name)
                    relu_dict[net.op.name] = net
                net = slim.max_pool2d(net, [2, 2], scope='pool%d' % (i + 1))

            # Use conv2d instead of fully_connected layers.
            net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding,
                              scope='fc6')
            net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
                               scope='dropout6')
            net = slim.conv2d(net, 4096, [1, 1], scope='fc7')
            # Convert end_points_collection into a end_point dict.
            end_points = slim.utils.convert_collection_to_dict(
                end_points_collection)
            if global_pool:
                net = tf.reduce_mean(net, [1, 2], keep_dims=True,
                                     name='global_pool')
                end_points['global_pool'] = net
            if num_classes:
                net = slim.dropout(net, dropout_keep_prob,
                                   is_training=is_training,
                                   scope='dropout7')
                net = slim.conv2d(net, num_classes, [1, 1],
                                  activation_fn=None,
                                  normalizer_fn=None,
                                  scope='fc8')
                if spatial_squeeze:
                    net = tf.squeeze(net, [1, 2], name='fc8/squeezed')
                end_points[sc.name + '/fc8'] = net

            end_points.update(relu_dict)
            return net, end_points


def visualize_feature_map(feature_map,
                          col_nums=None,
                          gap_value=0.5,
                          gap_width=10,
                          gap_height=10):
    # 见本文档前面
    pass


def main():
    image_file = r'D:\data\test_images\lena512color.tiff'
    model_path = r'E:\pretrained_model\tensorflow1.13\vgg_19.ckpt'
    inputs_ = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])
    outputs, feature_map_dict = vgg19(inputs_,
                                      num_classes=0,
                                      is_training=False,
                                      global_pool=True)

    # check trainable variables
    for var in tf.trainable_variables():
        print(var)

    # load pretrained model
    saver = tf.train.Saver()
    sess = tf.Session()
    saver.restore(sess, model_path)

    # running test
    inputs = cv2.imread(image_file)
    inputs = np.expand_dims(inputs, axis=0)
    out, feature_maps = sess.run([outputs, feature_map_dict],
                                 feed_dict={
                                     inputs_: inputs,
                                 })

    # print shape of feature maps
    for key in feature_maps.keys():
        print(key, feature_maps.get(key).shape)

    feature_map = feature_maps.get('vgg_19/conv3/relu3_4')
    feature_map = np.squeeze(feature_map)
    image = visualize_feature_map(feature_map)
    image = np.clip(image * 255, 0, 255).astype(np.uint8)
    cv2.imwrite('lena_feature_map_vgg_relu3_4--2.png', image)

    # print statistics for relu3_4
    for i in range(5):
        mean_val = np.mean(feature_map[:, :, i])
        std = np.std(feature_map[:, :, i])
        min_val = np.min(feature_map[:, :, i])
        max_val = np.max(feature_map[:, :, i])
        print(i + 1, " min=%.4f, max=%.4f, mean=%.4f, std=%.4f" % (
            min_val, max_val, mean_val, std))

    # print statistics for conv3_4
    print('\n')
    feature_map = feature_maps.get('vgg_19/conv3/conv3_4')
    feature_map = np.squeeze(feature_map)
    for i in range(5):
        mean_val = np.mean(feature_map[:, :, i])
        std = np.std(feature_map[:, :, i])
        min_val = np.min(feature_map[:, :, i])
        max_val = np.max(feature_map[:, :, i])
        print(i + 1, " min=%.4f, max=%.4f, mean=%.4f, std=%.4f" % (
            min_val, max_val, mean_val, std))

    feature_vec = feature_maps.get('global_pool')
    feature_vec = np.squeeze(feature_vec)
    for i in range(10):
        print(feature_vec[i])


if __name__ == '__main__':
    main()

说明如下:

  1. 改模型结构的目的:将conv和relu分离开来,方便使用conv层的结果来作为vgg loss的输入。

  2. 改模型定义函数的关键点:确保结构不能变;确保节点名不能变;由于原始代码不能直接收集relu层的feature map,所以需要自行定义一个dict进行收集。

  3. conv3_4的feature map统计信息如下,可以看到min value已经出现负数,所以确实实现了与relu层的分离。

    1  min=-2909.7209, max=9201.5811, mean=92.2542, std=991.5225
    2  min=-431.0446, max=7389.5913, mean=1411.6982, std=617.5237
    3  min=-1092.2075, max=3323.7239, mean=339.5828, std=582.6731
    4  min=-2396.4478, max=4319.3765, mean=106.6278, std=852.0536
    5  min=-3547.4551, max=8997.2305, mean=699.2141, std=1488.1344
    
  4. feature_maps里面的内容多了relu部分,因为是在代码的最后update进去的,所以这部分在feature_maps的最后:

    ......
    vgg_19/conv1/relu1_1 (1, 512, 512, 64)
    vgg_19/conv1/relu1_2 (1, 512, 512, 64)
    vgg_19/conv2/relu2_1 (1, 256, 256, 128)
    vgg_19/conv2/relu2_2 (1, 256, 256, 128)
    vgg_19/conv3/relu3_1 (1, 128, 128, 256)
    vgg_19/conv3/relu3_2 (1, 128, 128, 256)
    vgg_19/conv3/relu3_3 (1, 128, 128, 256)
    vgg_19/conv3/relu3_4 (1, 128, 128, 256)
    ......
    
  5. 其他输出变量已经检查,与第一种方式没有差异,说明魔改的结果是正确的。

3. 使用NewCheckpointReader并自定义模型

这种方法分两部分说明。
第一部分简单说明如何从预训练模型中拿到权重参数;第二部分详细说明如何将预训练权重系数赋值给新定义的模型,并进行测试。

下面是第一部分的代码:

# -*- coding: utf-8 -*-
from tensorflow.python import pywrap_tensorflow as wrap


def main():
    model_path = r'E:\pretrained_model\tf1x\vgg_19.ckpt'
    reader = wrap.NewCheckpointReader(model_path)

    variables_shape = reader.get_variable_to_shape_map()
    variables_dtype = reader.get_variable_to_dtype_map()
    for key in variables_shape.keys():
        print(key, variables_shape.get(key), variables_dtype.get(key))

    print('\n')
    print(reader.has_tensor("vgg_19/mean_rgb"))
    rgb_mean = reader.get_tensor("vgg_19/mean_rgb")
    print(rgb_mean)


if __name__ == '__main__':
    main()

上述代码有几个需说明的地方:

  1. NewCheckpointReader用于加载预训练模型的权重
  2. get_variable_to_shape_map()和get_variable_to_dtype_map()可以查看权重参数的shape和dtype
  3. get_tensor()可以获得权重参数,返回的是numpy数组

打印出来的结果如下,其中有两个比较巧妙的参数,global_stepvgg_19/mean_rgb,mean_rgb打印出来有具体数值:

global_step [] <dtype: 'int64'>
vgg_19/conv2/conv2_2/biases [128] <dtype: 'float32'>
vgg_19/conv2/conv2_2/weights [3, 3, 128, 128] <dtype: 'float32'>
vgg_19/conv1/conv1_1/biases [64] <dtype: 'float32'>
vgg_19/conv1/conv1_1/weights [3, 3, 3, 64] <dtype: 'float32'>
vgg_19/conv1/conv1_2/biases [64] <dtype: 'float32'>
vgg_19/conv1/conv1_2/weights [3, 3, 64, 64] <dtype: 'float32'>
......
vgg_19/mean_rgb [3] <dtype: 'float32'>
......
vgg_19/fc8/weights [1, 1, 4096, 1000] <dtype: 'float32'>


[123.68 116.78 103.94]

下面是第二部分的代码:

# -*- coding: utf-8 -*-
import os
import cv2
import tensorflow as tf
import numpy as np
from tensorflow.python import pywrap_tensorflow as wrap

os.environ['CUDA_VISIBLE_DEVICES'] = "/gpu:0"
slim = tf.contrib.slim


def vgg19(inputs,
          scope_name='vgg_19'):
    with tf.variable_scope(scope_name):

        net_config = [
            [64, 2],
            [128, 2],
            [256, 4],
            [512, 4],
            [512, 4],
        ]  # [filters, blocks]

        feature_maps = {}
        x = inputs
        for i, config in enumerate(net_config):
            filters = config[0]
            for j in range(config[1]):
                conv_name = 'conv%d_%d' % (i + 1, j + 1)
                relu_name = 'relu%d_%d' % (i + 1, j + 1)

                x = tf.layers.conv2d(x, filters, [3, 3],
                                     padding='same',
                                     name=conv_name)
                feat_map_name = x.op.name.replace('/BiasAdd', '')
                feature_maps[feat_map_name] = x

                x = tf.nn.relu(x, name=relu_name)
                feature_maps[x.op.name] = x

            x = tf.layers.max_pooling2d(x, (2, 2), (2, 2),
                                        name='pool%d' % (i + 1))
            feat_map_name = x.op.name.replace('/MaxPool', '')
            feature_maps[feat_map_name] = x

        return x, feature_maps


def visualize_feature_map(feature_map,
                          col_nums=None,
                          gap_value=0.5,
                          gap_width=10,
                          gap_height=10):
    # 见本文档前面
    pass


def _get_pretrained_tensor_name(name):
    block_num = int(name.split('/')[1][4:].split('_')[0])
    name = name.replace('vgg_19', 'vgg_19/conv%d' % block_num)
    name = name.replace('kernel', 'weights').replace('bias', 'biases')
    return name


def main():
    image_file = r'E:\images\lena512color.tiff'
    model_path = r'E:\pretrained_model\tf1x\vgg_19.ckpt'
    inputs_ = tf.placeholder(dtype=tf.float32, shape=[None, None, None, 3])
    outputs, feature_map_dict = vgg19(inputs_)
    trainable_vars = tf.trainable_variables()

    # use NewCheckpointReader to get weights
    reader = wrap.NewCheckpointReader(model_path)

    sess = tf.Session()
    sess.run(tf.global_variables_initializer())

    # print trainable variables before assignment
    for var in trainable_vars:
        print(var)
        print(sess.run(var)[:, :, 0, 0])
        break

    # trainable variables assignment
    print('\n')
    for i, var in enumerate(trainable_vars):
        name = _get_pretrained_tensor_name(var.op.name)
        sess.run(var.assign(reader.get_tensor(name)))

    # print trainable variables after assignment
    for var in trainable_vars:
        print(var)
        name = _get_pretrained_tensor_name(var.op.name)
        print(sess.run(var)[:, :, 0, 0])
        print('pretrained weight:')
        print(reader.get_tensor(name)[:, :, 0, 0])
        break

    # test case
    inputs = cv2.imread(image_file)
    inputs = np.expand_dims(inputs, axis=0)
    out, feature_maps = sess.run([outputs, feature_map_dict],
                                 feed_dict={
                                     inputs_: inputs,
                                 })

    # print shape of feature maps
    print('\n')
    for key in feature_maps.keys():
        print(key, feature_maps.get(key).shape)

    feature_map = feature_maps.get('vgg_19/relu3_4')
    feature_map = np.squeeze(feature_map)
    image = visualize_feature_map(feature_map)
    image = np.clip(image * 255, 0, 255).astype(np.uint8)
    cv2.imwrite('lena_feature_map_vgg_conv3_4--2.png', image)

    # print statistics for feature map
    print('\n')
    for i in range(5):
        mean_val = np.mean(feature_map[:, :, i])
        std = np.std(feature_map[:, :, i])
        min_val = np.min(feature_map[:, :, i])
        max_val = np.max(feature_map[:, :, i])
        print(i + 1, " min=%.4f, max=%.4f, mean=%.4f, std=%.4f" % (
            min_val, max_val, mean_val, std))


if __name__ == '__main__':
    main()

比如针对vgg loss这个需求,通常我们不需要最后的全连接层,所以本着节省算力及显存的目的,上述新定义的模型将全连接部分给去掉了,并且feature map / variables 的名字也重新进行了定义,这种情况下就无法使用restore功能加载预训练参数,只能使用赋值的方式。

上述代码整体分为两个部分,一是权重参数赋值,二是跟之前一样的测试用例。

下面对赋值的流程进行说明:

  1. 使用placeholder创建计算图并获取trainable_vars
  2. 使用NewCheckpointReader加载预训练模型的权重参数
  3. 创建Session并初始化全局变量
  4. 使用var.assign()方法给权重参数赋值

上述代码打印出来的结果如下:

<tf.Variable 'vgg_19/conv1_1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>
[[ 0.04975817 -0.0374901  -0.04425776]
 [ 0.03555809  0.08642714  0.05649987]
 [-0.07783681 -0.03184588 -0.07609541]]
(sess.run(tf.global_variables_initializer())之后打印了kernel的一部分,为随机初始化的结果)

<tf.Variable 'vgg_19/conv1_1/kernel:0' shape=(3, 3, 3, 64) dtype=float32_ref>
[[ 0.39416704  0.37740308 -0.04594866]
 [ 0.2671299   0.09986369 -0.34100872]
 [-0.07573577 -0.2803425  -0.41602272]]
pretrained weight:
[[ 0.39416704  0.37740308 -0.04594866]
 [ 0.2671299   0.09986369 -0.34100872]
 [-0.07573577 -0.2803425  -0.41602272]]
 (权重参数赋值之后,有一次打印了kernel的一部分,同时也打印了预训练模型中对应的部分,可以看到kernel被成功赋值)


vgg_19/conv1_1 (1, 512, 512, 64)
vgg_19/relu1_1 (1, 512, 512, 64)
vgg_19/conv1_2 (1, 512, 512, 64)
vgg_19/relu1_2 (1, 512, 512, 64)
vgg_19/pool1 (1, 256, 256, 64)
......
vgg_19/conv5_4 (1, 32, 32, 512)
vgg_19/relu5_4 (1, 32, 32, 512)
vgg_19/pool5 (1, 16, 16, 512)
(检查featuremap的名字和shape)


1  min=0.0000, max=9201.5811, mean=386.3745, std=737.3252
2  min=0.0000, max=7389.5913, mean=1412.0540, std=616.6437
3  min=0.0000, max=3323.7239, mean=400.2662, std=522.4063
4  min=0.0000, max=4319.3765, mean=369.9904, std=644.4222
5  min=0.0000, max=8997.2305, mean=905.1512, std=1288.8953
(打印 relu3_4,并与之前的两种方法对比数值,结果是一样的,说明整体流程没什么问题)

最后来看一下代码中保存的那张feature map图:
在这里插入图片描述

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-28 09:00:22  更:2021-08-28 09:00:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 17:53:58-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码