| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> SVM的原理 -> 正文阅读 |
|
[人工智能]SVM的原理 |
SVM的基本概念支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(或称泛化能力)。 1)线性分类如果需要分类的数据都是线性可分的,那么只需要用f(x)=wx+b的直线将其分开即可。 该法被称为线性分类器。
在超平面wx+b=0确定的情况下,|wx+b|能够表示点x到距离超平面的远近,而通过观察wx+b的符号与类标记y的符号是否一致可判断分类是否正确,所以,可以用(y(w*x+b))的正负性来判定或表示分类的正确性。于此,我们便引出了函数间隔(functional margin)的概念。
2)非线性分类刚才的情况是二维平面上的,如果问题在三维甚至高维该怎么处理呢 比如说,我这里有一组三维的数据X=(x1,x2,x3),线性不可分割,因此我需要将他转换到六维空间去。因此我们可以假设六个维度分别是:x1,x2,x3,x1^2,x1x2,x1x3,当然还能继续展开,但是六维的话这样就足够了。 核函数我们会经常遇到线性不可分的样例,此时,我们的常用做法是把样例特征映射到高维空间中去。但进一步,如果凡是遇到线性不可分的样例,一律映射到高维空间,那么这个维度大小是会高到可怕的,而且内积方式复杂度太大。此时,核函数就隆重登场了,核函数的价值在于它虽然也是讲特征进行从低维到高维的转换,但核函数绝就绝在它事先在低维上进行计算,而将实质上的分类效果表现在了高维上,也就如上文所说的避免了直接在高维空间中的复杂计算。 所以,解决问题的关键就在于核函数,关于核函数的定义如下: h度多项式核函数(Polynomial Kernel of Degree h) 高斯径向基和函数(Gaussian radial basis function Kernel) S型核函数(Sigmoid function Kernel) 图像分类,通常使用高斯径向基和函数,因为分类较为平滑,文字不适用高斯径向基和函数。没有标准的答案,可以尝试各种核函数,根据精确度判定。 拉格朗日乘子法1)无约束条件 这是最简单的情况,解决方法通常是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证即可。 拉格朗日乘子法的求解流程大概包括以下几个步骤:
三)、不等式约束条件 不等式约束相比于等式约束,要复杂一点,而且通常情况下,不等式约束和等式约束总喜欢一起出现,在这里,为了更好的解决该问题,除了拉格朗日乘子外,我们引入了KKT条件。
KKT条件是说最优值必须满足以下条件: 1)L(a, b, x)对x求导为零; 2)h(x) =0; SMO序列最小最优化算法SMO可以实现SVM的高效学习。 代码线性基础:
线性展示图:
|
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/27 17:52:42- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |