IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> BP神经网络 从推导到现实 -> 正文阅读

[人工智能]BP神经网络 从推导到现实

一、BP神经网络—从推导到实现

1 BP神经网络结构

BP神经网络是一个非常经典的网络结构。整个网络结构包含了:一层输入层,一到多层隐藏层,一层输出层。它既可以处理线性问题,也可以处理非线性问题。学习过程由信号的正向传播和误差的反向传播两个过程组成。我们可以利用误差反向传播算法进行迭代,使误差逐渐减少到我们的接受范围内。

2 算法原理

2.1 网络结构

在这里插入图片描述

输入层——神经网络中的第一层。它需要输入信号并将它们传递到下一层。它不对输入信号做任何操作,并且没有关联的权重和偏置值。
隐藏层——除输入层和输出层以外的其他各层叫做隐藏层。隐藏层不直接接受外界的信号,也不直接向外界发送信号。隐藏层在神经网络中的作用:中间的黑盒子,可以认为是不同功能层的一个总称。
输出层——网络的最后一层,它接收来自最后一个隐藏层的输入,输出模型预测的结果值。

2.2 正向传播

就是结构图从左到右的运算过程。

正向传播就是让信息从输入层进入网络,依次经过每一层的计算,得到最终输出层结果的过程。

把小圈圈叫做神经元,是组成神经网络的基本单元。

上一层的输出数据作为小圈圈的输入数据,先加权求和加偏置b,然后代入激活函数f(x)计算,结果输出。

img

正向传播就是输入数据经过一层一层的神经元运算、输出的过程,最后一层输出值作为算法预测值y’。

2.3 反向传播

BP神经网络全称 back propagation neural network,那back propagation反向传播是什么?
反向传播的建设本质上就是寻找最优的参数组合,和上面的流程差不多,根据算法预测值和实际值之间的损失函数L(y’,y),来反方向地计算每一层的z、a、w、b的偏导数,从而更新参数。
对反向传播而言,输入的内容是预测值和实际值的误差,输出的内容是对参数的更新,方向是从右往左,一层一层的更新每一层的参数。

BP神经网络通过先正向传播,构建参数和输入值的关系,通过预测值和实际值的误差,反向传播修复权重;读入新数据再正向传播预测,再反向传播修正,…,通过多次循环达到最小损失值,此时构造的模型拥有最优的参数组合。

3 实现

3.1 实施步骤

1)初始化网络中的权值和偏置项

初始化参数值(输出单元权值、偏置项和隐藏单元权值、偏置项均为模型的参数),是为激活前向传播,得到每一层元素的输出值,进而得到损失函数的值。参数初始化,可以自己设定,也可以选择随机生成;一般情况下,自己写代码或者调用tensorflow或keras时,都是随机生成参数。因为初始参数对最终的参数影响不大,只会影响迭代的次数。

2)激活前向传播,得到各层输出和损失函数的期望值

在步骤1的基础上,激活前向传播,得img的值,进而得到的值;其中的计算,根据前面模型设定中的公式计算。计算这些值是为计算步骤3中的误差项。

3)根据损失函数,计算输出单元的误差项和隐藏单元的误差项

计算各项误差,即计算参数关于损失函数的梯度或偏导数,之所以称之为误差,是因为损失函数本身为真实值与预测值之间的差异。计算参数的偏导数,根据的是微积分中的链式法则。

注意: 对于复合函数中的向量或矩阵求偏导,复合函数内部函数的偏导总是左乘;对于复合函数中的标量求偏导,复合函数内部函数的偏导左乘或者右乘都可以。

4) 更新神经网路中的权值和偏置项

更新神经网路中的权值和偏置项。学习率自己设定,学习率太大,容易跳过最佳的参数;学习率太小,容易陷入局部极小值。

5) 重复步骤2-4,直到损失函数小于事先给定的阈值或迭代次数用完为止,输出此时的参数即为目前最佳参数。

设定阈值e或者设定迭代次数,当损失函数值小于阈值e时,或当迭代次数用完时,输出最终参数。

实例编程实现(python语言)

(此处只展示核心代码)

正向传播:

在这里插入图片描述
反向传播:
在这里插入图片描述

完整代码链接
提取码:d2pu

参考:
https://www.jianshu.com/p/9037890c9b65

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-08-30 12:03:49  更:2021-08-30 12:04:58 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/1 10:31:10-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码