| |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| -> 人工智能 -> Python机器学习--分类 |回归算法--KNN(K最近邻)算法 -> 正文阅读 |
|
|
[人工智能]Python机器学习--分类 |回归算法--KNN(K最近邻)算法 |
KNN算法介绍与类型K最近邻(K-Nearest Neighbors,KNN)算法是一种基本的分类和回归算法【有监督学习】,也是最简单易懂的机器学习算法,没有之一。1968年由Cover和Hart提出,应用场景有字符识别、文本分类、图像识别等领域。
算法的思想: 一个样本与数据集中的k个样本最相似, 如果这k个样本中的大多数属于某一个类别, 则该样本也属于这个类别。 KNN算法的原理1.计算测试样本与训练集中所有样本之间的相似度(使用距离表征相似度.) 相似度计算
?KNN算法的特点1、惰性学习算法(边测试,边训练),没有明显的训练过程、
3、设置的K值不同,预测结果不同——如何选择最优的K值 交叉验证——利用嵌套循环探究k值和knn中的参数weights的最佳匹配
网格搜索——网格搜索的基础就是交叉验证,是通过sklearn的方法来实现的
KNN算法的API
KNN算法优化KD树KD树的优化原理:1、对于一个只有两个特征x和y的训练集,比较两列的特征的方差,方差最大的作为第一个考虑对象,将其从小到大排列,选出中位数(注意:此处的中位数必须是一个固定的值,也就是说当有两个中位数时,不需要求他们的均值,只需要任选一个),选出中位数所在的(x,y)作为根节点(比如方差最大的是x列,根节点的子节点将考虑y列的中位数,子节点的子节点再考虑x,以此类推)
2、将小于中位数的(x,y)作为根节点的左子节点,将大于中位数的(x,y)作为根节点的右子节点,再对两个子节点的y值进行排序和求中位数,比中位数小的放左边,比中位数大的放右边,直到每个子节点只剩一个叶子节点时停止? ? 搜索方法:1、比如给定一组特征(2.1,3.1),由于我们上面的kd树的根节点是先根据x判断的,所以先判断2.1和7的大小,很显然比7小放到根节点的左边
? 4、继续向上回溯到根节点,同理以(2.1,3.1)为圆心,dis为半径画圆,更不会与x=7相交,所以不考虑(7,2)的右子树
KD树小结
使用sklearn中的KNN实现电影分类根据不同种类镜头数量预测电影类型
KNN算法普通代码实现
|
|
|
|
|
| 上一篇文章 下一篇文章 查看所有文章 |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| 360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年11日历 | -2025/11/25 23:13:12- |
|
| 网站联系: qq:121756557 email:121756557@qq.com IT数码 |