| 第一次接触pytorch,本贴仅记录学习过程,侵删 在B站看完了视频的P7 07.处理多维特征的输入。附上视频地址:《PyTorch深度学习实践》完结合集_07. 处理多维特征的输入
 先记录一些笔记。 Multiple Dimension Logistic Regression Model:
  Mini-Batch (N samples):
 
  import torch
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear = torch.nn.Linear(8, 1)
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self, x):
        x = self.sigmoid(self.linear(x))
        return x
model = Model()
 矩阵是一种空间变换的函数,是从N维空间映射到M维空间的线性变换。  
  Example:Diabetes Prediction
 import numpy as np
import torch
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy((xy[:, :-1]))
y_data = torch.from_numpy(xy[:, [-1]])
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        self.sigmoid = torch.nn.Sigmoid()
    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        return x
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for epoch in range(1000):
    
    y_pred = model(x_data)  
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    
    optimizer.zero_grad()
    loss.backward()
    
    optimizer.step()
 使用不同的激活函数:
  其中,ReLU并不是连续的。
 可以在此链接出看到相应激活函数的具体内容:Visualising Activation Functions in Neural Networks Pytorch激活函数文档:Non-linear Activations (weighted sum, nonlinearity) 当我们尝试不同的激活函数时,我们只需修改一小部分内容:特别的,如果我们设置的激活函数是ReLU,由于它的取值范围是在(0,1),最后一层输出的值如果是小于0的话,那么在ReLU作用后,输出会为0,如果后面我们需要算ln0的话,就会出现问题。这个时候我们就可以把最后一层的激活函数改成sigmoid,这样结果就会得到0-1之间比较光滑的概率输出。
 import numpy as np
import torch
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy((xy[:, :-1]))
y_data = torch.from_numpy(xy[:, [-1]])
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        
        self.activate = torch.nn.ReLU()
    def forward(self, x):
        x = self.activate(self.linear1(x))
        x = self.activate(self.linear2(x))
        x = torch.sigmoid(self.linear3(x))
        return x
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for epoch in range(1000):
    
    y_pred = model(x_data)  
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    
    optimizer.zero_grad()
    loss.backward()
    
    optimizer.step()
 |