| 
 1.实现效果使用DCGAN训练MINIST数据集,最终实现生成手写数字 2.环境配置2.1PythonPython版本为3.7 2.2Pytorch、CUDA在这里不详细介绍了,网上有很多的安装教程,小伙伴们自行查找吧! 2.3Python IDEPycharm 3.具体实现整体分为4个文件:data.py、model.py、net.py、main.py 3.1数据预处理(data.py)(1)导入包from torch.utils.data import DataLoader
from torchvision import utils, datasets, transforms
 (2)定义数据类class ReadData():
    def __init__(self,data_path,image_size=64):
        self.root=data_path
        self.image_size=image_size
        self.dataset=self.getdataset()
    def getdataset(self):
        
        dataset = datasets.ImageFolder(root=self.root,
                                   transform=transforms.Compose([
                                       transforms.Resize(self.image_size),
                                       transforms.CenterCrop(self.image_size),
                                       transforms.ToTensor(),
                                       transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
                                   ]))
        
        print(f'Total Size of Dataset: {len(dataset)}')
        return dataset
    def getdataloader(self,batch_size=128):
        dataloader = DataLoader(
            self.dataset,
            batch_size=batch_size,
            shuffle=True,
            num_workers=0)
        return dataloader
 3.2模型Generator,Discriminator,权重初始化(model.py)(1)导入包import torch.nn as nn
 (2)Generatorclass Generator(nn.Module):
    def __init__(self, nz,ngf,nc):
        super(Generator, self).__init__()
        self.nz = nz
        self.ngf = ngf
        self.nc=nc
        self.main = nn.Sequential(
            
            nn.ConvTranspose2d(self.nz, self.ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(self.ngf * 8),
            nn.ReLU(True),
            
            nn.ConvTranspose2d(self.ngf * 8, self.ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf * 4),
            nn.ReLU(True),
            
            nn.ConvTranspose2d(self.ngf * 4, self.ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf * 2),
            nn.ReLU(True),
            
            nn.ConvTranspose2d(self.ngf * 2, self.ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ngf),
            nn.ReLU(True),
            
            nn.ConvTranspose2d(self.ngf, self.nc, 4, 2, 1, bias=False),
            nn.Tanh()
            
        )
    def forward(self, input):
        return self.main(input)
 (3)Discriminatorclass Discriminator(nn.Module):
    def __init__(self, ndf,nc):
        super(Discriminator, self).__init__()
        self.ndf=ndf
        self.nc=nc
        self.main = nn.Sequential(
            
            nn.Conv2d(self.nc, self.ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(self.ndf, self.ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(self.ndf * 2, self.ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(self.ndf * 4, self.ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(self.ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            
            nn.Conv2d(self.ndf * 8, 1, 4, 1, 0, bias=False),
            
            nn.Sigmoid()
        )
    def forward(self, input):
        return self.main(input)
 (4)权重初始化def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)
 3.3网络训练(net.py)(1)导入包import torch
import torch.nn as nn
from torchvision import utils, datasets, transforms
import time
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
 (2)创建类class DCGAN():
    def __init__(self,nz, lr,beta1,device, model_save_path,figure_save_path,generator, discriminator, data_loader,):
        self.nz=nz
        self.real_label=1
        self.fake_label=0
        self.device = device
        self.model_save_path=model_save_path
        self.figure_save_path=figure_save_path
        self.G = generator.to(device)
        self.D = discriminator.to(device)
        self.opt_G=torch.optim.Adam(self.G.parameters(), lr=lr, betas=(beta1, 0.999))
        self.opt_D = torch.optim.Adam(self.D.parameters(), lr=lr, betas=(beta1, 0.999))
        self.criterion = nn.BCELoss().to(device)
        self.dataloader=data_loader
        self.fixed_noise = torch.randn(100, nz, 1, 1, device=device)
        self.img_list = []
        self.G_loss_list = []
        self.D_loss_list = []
        self.D_x_list = []
        self.D_z_list = []
    def train(self,num_epochs):
        loss_tep = 10
        G_loss=0
        D_loss=0
        print("Starting Training Loop...")
        
        for epoch in range(num_epochs):
        
            beg_time = time.time()
            
            for i, data in enumerate(self.dataloader):
                
                
                
                x = data[0].to(self.device)
                b_size = x.size(0)
                lbx = torch.full((b_size,), self.real_label, dtype=torch.float, device=self.device)
                D_x = self.D(x).view(-1)
                LossD_x = self.criterion(D_x, lbx)
                D_x_item = D_x.mean().item()
                
                z = torch.randn(b_size, self.nz, 1, 1, device=self.device)
                gz = self.G(z)
                lbz1 = torch.full((b_size,), self.fake_label, dtype=torch.float, device=self.device)
                D_gz1 = self.D(gz.detach()).view(-1)
                LossD_gz1 = self.criterion(D_gz1, lbz1)
                D_gz1_item = D_gz1.mean().item()
                
                LossD = LossD_x + LossD_gz1
                
                self.opt_D.zero_grad()
                LossD.backward()
                self.opt_D.step()
                
                D_loss+=LossD
                
                
                
                lbz2 = torch.full((b_size,), self.real_label, dtype=torch.float, device=self.device) 
                D_gz2 = self.D(gz).view(-1)
                D_gz2_item = D_gz2.mean().item()
                LossG = self.criterion(D_gz2, lbz2)
                
                self.opt_G.zero_grad()
                LossG.backward()
                self.opt_G.step()
                
                G_loss+=LossG
                end_time = time.time()
            
                run_time = round(end_time - beg_time)
                
                print(
                    f'Epoch: [{epoch + 1:0>{len(str(num_epochs))}}/{num_epochs}]',
                    f'Step: [{i + 1:0>{len(str(len(self.dataloader)))}}/{len(self.dataloader)}]',
                    f'Loss-D: {LossD.item():.4f}',
                    f'Loss-G: {LossG.item():.4f}',
                    f'D(x): {D_x_item:.4f}',
                    f'D(G(z)): [{D_gz1_item:.4f}/{D_gz2_item:.4f}]',
                    f'Time: {run_time}s',
                    end='\r\n'
                )
                
                
                self.G_loss_list.append(LossG.item())
                self.D_loss_list.append(LossD.item())
                
                self.D_x_list.append(D_x_item)
                self.D_z_list.append(D_gz2_item)
                
                
                
                
            torch.save(self.D.state_dict(), self.model_save_path + 'disc_{}.pth'.format(epoch))
            torch.save(self.G.state_dict(), self.model_save_path + 'gen_{}.pth'.format(epoch))
                
            with torch.no_grad():
                fake = self.G(self.fixed_noise).detach().cpu()
            self.img_list.append(utils.make_grid(fake * 0.5 + 0.5, nrow=10))
            print()
        plt.figure(1,figsize=(8, 4))
        plt.title("Generator and Discriminator Loss During Training")
        plt.plot(self.G_loss_list[::100], label="G")
        plt.plot(self.D_loss_list[::100], label="D")
        plt.xlabel("iterations")
        plt.ylabel("Loss")
        plt.axhline(y=0, label="0", c="g")  
        plt.legend()
        plt.savefig(self.figure_save_path + str(num_epochs) + 'epochs_' + 'loss.jpg', bbox_inches='tight')
        plt.figure(2,figsize=(8, 4))
        plt.title("D(x) and D(G(z)) During Training")
        plt.plot(self.D_x_list[::100], label="D(x)")
        plt.plot(self.D_z_list[::100], label="D(G(z))")
        plt.xlabel("iterations")
        plt.ylabel("Probability")
        plt.axhline(y=0.5, label="0.5", c="g")  
        plt.legend()
        plt.savefig(self.figure_save_path + str(num_epochs) + 'epochs_' + 'D(x)D(G(z)).jpg', bbox_inches='tight')
        fig = plt.figure(3,figsize=(5, 5))
        plt.axis("off")
        ims = [[plt.imshow(item.permute(1, 2, 0), animated=True)] for item in self.img_list]
        ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)
        HTML(ani.to_jshtml())
        
        ani.save(self.figure_save_path + str(num_epochs) + 'epochs_' + 'generation.gif')
        plt.figure(4,figsize=(8, 4))
        
        plt.subplot(1, 2, 1)
        plt.axis("off")
        plt.title("Real Images")
        real = next(iter(self.dataloader))  
        plt.imshow(utils.make_grid(real[0][:100] * 0.5 + 0.5, nrow=10).permute(1, 2, 0))
        
        
        
        self.G.eval()
        
        with torch.no_grad():
            fake = self.G(self.fixed_noise).to('cpu')
        
        plt.subplot(1, 2, 2)
        plt.axis("off")
        plt.title("Fake Images")
        fake = utils.make_grid(fake[:100] * 0.5 + 0.5, nrow=10)
        plt.imshow(fake.permute(1, 2, 0))
        
        plt.savefig(self.figure_save_path + str(num_epochs) + 'epochs_' + 'result.jpg', bbox_inches='tight')
        plt.show()
    def test(self,epoch):
        
        plt.figure(figsize=(8, 4))
        
        plt.subplot(1, 2, 1)
        plt.axis("off")
        plt.title("Real Images")
        real = next(iter(self.dataloader))
        plt.imshow(utils.make_grid(real[0][:100] * 0.5 + 0.5, nrow=10).permute(1, 2, 0))
        
        self.G.load_state_dict(torch.load(self.model_save_path + 'disc_{}.pth'.format(epoch), map_location=torch.device(self.device)))
        self.G.eval()
        
        with torch.no_grad():
            fake = self.G(self.fixed_noise.to(self.device))
        
        plt.subplot(1, 2, 2)
        plt.axis("off")
        plt.title("Fake Images")
        fake = utils.make_grid(fake * 0.5 + 0.5, nrow=10)
        plt.imshow(fake.permute(1, 2, 0))
        
        plt.savefig(self.figure_save_path+'result.jpg', bbox_inches='tight')
        plt.show()
 3.4 主函数(main.py)(1)导入文件from data import ReadData
from model import Discriminator, Generator, weights_init
from net import DCGAN
import torch
 (2)定义超参数ngpu=1
ngf=64
ndf=64
nc=1
nz=100
lr=0.003
beta1=0.5
datapath="./data"
batchsize=100
model_save_path="./models/"
figure_save_path="./figures/"
device = torch.device('cuda:0' if (torch.cuda.is_available() and ngpu > 0) else 'cpu')
 (3)实例化dataset=ReadData(datapath)
dataloader=dataset.getdataloader(batch_size=batchsize)
G = Generator(nz,ngf,nc).apply(weights_init)
D = Discriminator(ndf,nc).apply(weights_init)
dcgan=DCGAN(nz, lr,beta1,device, model_save_path,figure_save_path,G, D, dataloader)
 (4)进行训练dcgan.train(num_epochs=5)
 4.训练过程4.1 Generator和Discriminator的Loss损失曲线图
 4.2 D(x)和D(G(z))曲线图训练过程中Discriminator输出(以5个epoch为例):
  4.3最终生成结果图训练结束后生成图片(以5个epoch为例):
  4.4 训练过程的生成结果动图
 5.完整代码 
 链接:https://pan.baidu.com/s/1suzA3-F2FYem99Gch8hnig提取码:DGAN
 6.引用参考 
 https://blog.csdn.net/qq_42951560/article/details/112199229 7.问题反馈如果运行有问题,欢迎给我私信留言! |