| |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| -> 人工智能 -> CNN(卷积神经网络)学习笔记 -> 正文阅读 |
|
|
[人工智能]CNN(卷积神经网络)学习笔记 |
CNN的概念卷积神经网络(Convolutional Neural Networks / CNNs / ConvNets)与普通神经网络非常相似,它们都由具有可学习的权重和偏置常量(biases)的神经元组成。每个神经元都接收一些输入,并做一些点积计算,输出是每个分类的分数。 CNN的结构层次基础的CNN由卷积(convolution), 激活(activation), and 池化(pooling)三种结构组成。CNN输出的结果是每幅图像的特定特征空间 卷积层: 卷积结果计算公式
? 激活映射(特征映射):如果输入的是一个32×32×3的像素值数组,过滤器(有时候也被称为神经元(neuron)或核(kernel))作用于感受野(receptive field),过滤器是一个数组(其中的元素被称为权重或参数),重点在于过滤器的深度必须与输入内容的深度相同(这样才能确保可以进行数学运算),因此过滤器大小为 5 x 5 x 3。过滤器首先在图像左上角,向右以每次一个像素滑动,每次滑动前过滤器中的值会与图像中的原始像素值相乘(又称为计算点积)。这些乘积被加在一起得到一个数。由于这种过滤器能得到28×28个结果,因此结果可以表示为一个28×28的数组。 当我们使用两个而不是一个 5 x 5 x 3 的过滤器时,输出总量将会变成 28 x 28 x 2。采用的过滤器越多,空间维度( spatial dimensions)保留得也就越好。每个卷积核检验的特征不同。 池化层池化(pooling),是一种降采样操作(subsampling),主要目标是降低feature maps的特征空间,或者可以认为是降低feature maps的分辨率。因为feature map参数太多,而图像细节不利于高层特征的抽取。 全连接层 对于任意一个卷积层,要把它变成全连接层只需要把权重变成一个巨大的矩阵,其中大部分都是0 除了一些特定区块,而且好多区块的权值还相同 特征图在每个卷积层,数据都是以三维形式存在的。你可以把它看成许多个二维图片叠在一起,其中每一个称为一个特征图。在输入层,如果是灰度图片,那就只有一个特征图;如果是彩色图片,一般就是3个特征图(红绿蓝)。 应用领域 卷积神经网络为图像而生,但应用不限于图像。在图像处理任务上,卷积神经网络可以用来识别位移、缩放及物体形态扭曲的二维图形。一方面,由于其网络模型中的特征是通过训练数据集进行图像特征学习,从而避免了显式地特征抽取;另一方面,由于图像上同一特征映射面上的神经元权值相同,所以卷积神经网络模型可以并行训练,极大地提高神经网络的训练时长。此外,与神经元彼此相连的神经网络(如传统的人工神经网络)相比,卷积神经网络模型的组织方式特殊,其结构模型更易于理解和分析。
?
|
|
|
|
|
| 上一篇文章 下一篇文章 查看所有文章 |
|
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
| 360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年11日历 | -2025/11/30 5:11:41- |
|
| 网站联系: qq:121756557 email:121756557@qq.com IT数码 |