ITÊýÂë ¹ºÎï ÍøÖ· Í·Ìõ Èí¼þ ÈÕÀú ÔĶÁ ͼÊé¹Ý
TxTС˵ÔĶÁÆ÷
¡ýÓïÒôÔĶÁ,С˵ÏÂÔØ,¹ÅµäÎÄѧ¡ý
ͼƬÅúÁ¿ÏÂÔØÆ÷
¡ýÅúÁ¿ÏÂÔØͼƬ,ÃÀŮͼ¿â¡ý
ͼƬ×Ô¶¯²¥·ÅÆ÷
¡ýͼƬ×Ô¶¯²¥·ÅÆ÷¡ý
Ò»¼üÇå³ýÀ¬»ø
¡ýÇáÇáÒ»µã,Çå³ýϵͳÀ¬»ø¡ý
¿ª·¢: C++֪ʶ¿â Java֪ʶ¿â JavaScript Python PHP֪ʶ¿â È˹¤ÖÇÄÜ Çø¿éÁ´ ´óÊý¾Ý Òƶ¯¿ª·¢ ǶÈëʽ ¿ª·¢¹¤¾ß Êý¾Ý½á¹¹ÓëËã·¨ ¿ª·¢²âÊÔ ÓÎÏ·¿ª·¢ ÍøÂçЭÒé ϵͳÔËά
½Ì³Ì: HTML½Ì³Ì CSS½Ì³Ì JavaScript½Ì³Ì GoÓïÑÔ½Ì³Ì JQuery½Ì³Ì VUE½Ì³Ì VUE3½Ì³Ì Bootstrap½Ì³Ì SQLÊý¾Ý¿â½Ì³Ì CÓïÑÔ½Ì³Ì C++½Ì³Ì Java½Ì³Ì Python½Ì³Ì Python3½Ì³Ì C#½Ì³Ì
ÊýÂë: µçÄÔ ±Ê¼Ç±¾ ÏÔ¿¨ ÏÔʾÆ÷ ¹Ì̬ӲÅÌ Ó²ÅÌ ¶ú»ú ÊÖ»ú iphone vivo oppo СÃ× »ªÎª µ¥·´ ×°»ú ͼÀ­¶¡
 
   -> È˹¤ÖÇÄÜ -> ÂÛÎÄÔĶÁ|struc2vec: Learning Node Representations from Structural Identity -> ÕýÎÄÔĶÁ

[È˹¤ÖÇÄÜ]ÂÛÎÄÔĶÁ|struc2vec: Learning Node Representations from Structural Identity

ÂÛÎÄÔĶÁ|struc2vec: Learning Node Representations from Structural Identity

Abstract

struc2vec ʹÓòã´Î½á¹¹À´ºâÁ¿²»Í¬³ß¶ÈµÄ½ÚµãÏàËÆÐÔ,²¢¹¹½¨Ò»¸ö¶à²ãͼÀ´±àÂë½á¹¹ÏàËÆÐÔ²¢Îª½ÚµãÉú³É½á¹¹ÉÏÏÂÎÄ¡£

Introduction

È·¶¨½Úµã½á¹¹Éí·ÝµÄ×î³£¼ûµÄʵÓ÷½·¨ÊÇ»ùÓÚ¾àÀë»òµÝ¹é¡£ ÔÚÇ°ÕßÖÐ,ÀûÓýڵãÁÚÓòµÄ¾àÀ뺯ÊýÀ´²âÁ¿ËùÓнڵã¶ÔÖ®¼äµÄ¾àÀë,È»ºóÖ´ÐоÛÀà»òÆ¥ÅäÒÔ½«½Úµã·ÅÈëµÈЧÀà ¡£ ºóÕßÖÐ,¹¹½¨¹ØÓÚÏàÁÚ½ÚµãµÄµÝ¹é,È»ºóµü´úÕ¹¿ªÖ±µ½ÊÕÁ²,×îÖÕÖµÓÃÓÚÈ·¶¨µÈЧÀà ¡£

ÔÚÕâÀï²åÈëͼƬÃèÊö

ÁìÓòÏàËƵĽáµã¾ßÓнṹÏàËÆÐÔ,µ«¾àÀë±È½ÏÔ¶µÄÕâÑùµÄ½áµã¾Í²»¾ßÓÐÏàËÆÐÔ¡£ÈçÉÏͼ½áµãuºÍv¡£

DeepWalkºÍNode2vecÔڽṹµÈЧÐÔÈÎÎñÖбíÏֺܲî,ÒòΪÏÖÔÚµÄ ÍøÂ綼¾ßÓкÜÇ¿µÄͬÖÊÐÔ¡£

struc2vecµÄ¾ßÌå¹ý³ÌÈçÏÂ:

  • ¶ÀÁ¢ÓÚ½ÚµãºÍ±ßÊôÐÔÒÔ¼°ËüÃÇÔÚÍøÂçÖеÄλÖÃÀ´ÆÀ¹À½ÚµãÖ®¼äµÄ½á¹¹ÏàËÆÐÔ¡£ Òò´Ë,¾ßÓÐÏàËƾֲ¿½á¹¹µÄÁ½¸ö½Úµã½«±»ÊÓΪ¶ÀÁ¢ÓÚÆäÁÚÓòÖеÄÍøÂçλÖúͽڵã±êÇ©¡£ ÎÒÃǵķ½·¨Ò²²»ÐèÒªÁ¬½ÓÍøÂç,²¢ÔÚ²»Í¬µÄÁ¬½Ó×é¼þÖÐʶ±ð½á¹¹ÏàËƵĽڵ㡣
  • ½¨Á¢²ã´Î½á¹¹À´ºâÁ¿½á¹¹ÏàËÆÐÔ,ÔÊÐí¶Ô½á¹¹ÏàËÆÐԵĺ¬ÒåÖð½¥Ìá³ö¸üÑϸñµÄ¸ÅÄî¡£ ÌرðÊÇÔÚ²ã´Î½á¹¹µÄ×îµ×²ã,½ÚµãÖ®¼äµÄ½á¹¹ÏàËƶȽöÈ¡¾öÓÚËüÃǵĶÈÊý,¶øÔÚ²ã´Î½á¹¹µÄ¶¥²¿,ÏàËÆÐÔÈ¡¾öÓÚÕû¸öÍøÂç(´Ó½ÚµãµÄ½Ç¶ÈÀ´¿´)¡£
  • Ϊ½ÚµãÉú³ÉËæ»úÉÏÏÂÎÄ,ÕâЩ½ÚµãÊǽṹÏàËƽڵãµÄÐòÁÐ,ͨ¹ý±éÀú¶à²ãͼ(¶ø²»ÊÇԭʼÍøÂç)µÄ¼ÓȨËæ»úÓÎ×߹۲쵽¡£ Òò´Ë,¾­³£³öÏÖÔÚÏàËÆÉÏÏÂÎÄÖеÄÁ½¸ö½Úµã¿ÉÄܾßÓÐÏàËƵĽṹ¡£

¶Ô±ÈËã·¨:DeepWalk,Node2vec,RolX¡£

Related Work

DeepWalk:ÈôÁ½¸ö½ÚµãµÄ¾àÀë(¼´ÌøÊý)´óÓÚSkip-GramµÄ´°¿Ú´óС,ÕâÖֽṹÏàËƾͱ»ºöÂÔÁË¡£

sub-graph2vec:ʹÓÃÁÚ¾Ó½ÚµãÉú³ÉÉÏÏÂÎÄ,½á¹¹ÉϷdz£ÏàËÆ(µ«Î´Í¨¹ý²âÊÔ)ÇÒ¾ßÓзÇÖصþÁÚ¾ÓµÄÁ½¸ö½ÚµãÔÚ¿Õ¼äÉÏ¿ÉÄܲ¢²»½Ó½ü¡£

RolX:¡¤¡¤¡¤

Strcu2vec

²½Öè:

  1. È·¶¨²»Í¬ÁÚÓò´óСµÄͼÖÐÿ¸ö¶¥µã¶ÔÖ®¼äµÄ½á¹¹ÏàËÆÐÔ¡£ ÕâÔÚ½ÚµãÖ®¼ä½á¹¹ÏàËÆÐԵĶÈÁ¿ÖÐÒýÈëÁ˲ã´Î½á¹¹,ÌṩÁ˸ü¶àÐÅÏ¢À´ÆÀ¹À²ã´Î½á¹¹µÄÿ¸ö¼¶±ðµÄ½á¹¹ÏàËÆÐÔ¡£
  2. ¹¹½¨Ò»¸ö¼ÓȨµÄ¶à²ãͼ,ÆäÖÐÍøÂçÖеÄËùÓнڵ㶼´æÔÚÓÚÿһ²ãÖÐ,ÿһ²ã¶ÔÓ¦ÓÚºâÁ¿½á¹¹ÏàËÆÐԵIJã´Î½á¹¹µÄÒ»¸ö¼¶±ð¡£´ËÍâ,ÿ²ãÄÚÿ¸ö½Úµã¶ÔÖ®¼äµÄ±ßȨÖØÓëÆä½á¹¹ÏàËÆÐԳɷ´±È¡£
  3. ʹÓöà²ãͼΪÿ¸ö½ÚµãÉú³ÉÉÏÏÂÎÄ¡£ÌرðÊÇ,ʹÓÃÓÐÆ«Ëæ»úÓÎ×ßÀ´Éú³É½ÚµãÐòÁС£ÕâЩÐòÁпÉÄÜ°üÀ¨½á¹¹¸üÏàËƵĽڵ㡣
  4. Ó¦ÓÃÒ»ÖÖ¼¼Êõ´Ó½ÚµãÐòÁиø¶¨µÄÉÏÏÂÎÄÖÐѧϰDZÔÚ±íʾ,ÀýÈç,SkipGram¡£

Measuring structural similarity

G=(V,E), R k ( u ) ±í ʾ ¾à Àë ½á µã u Ϊ k µÄ ½á µã ¼¯ R_k(u)±íʾ¾àÀë½áµãuΪkµÄ½áµã¼¯ Rk?(u)±íʾ¾àÀë½áµãuΪkµÄ½áµã¼¯

s ( S ) ±í ʾ ½á µã ¼¯ ºÏ S € V µÄ ÓÐ Ðò ¶È Êý Ðò ÁÐ s(S)±íʾ½áµã¼¯ºÏS€VµÄÓÐÐò¶ÈÊýÐòÁÐ s(S)±íʾ½áµã¼¯ºÏSVµÄÓÐÐò¶ÈÊýÐòÁÐ

ͨ¹ý±È½Ï½ÚµãuºÍv¼ä¾àÀëΪkµÄ»·Â·ÓÐÐò¶ÈÐòÁÐ,¿ÉÒÔÊ©¼Ó²ã´Î½á¹¹À´²âÁ¿½á¹¹ÏàËÆÐÔ¡£ÌرðµØ,µ±¿¼ÂÇËüÃÇµÄ k ÌøÁÚÓò(¾àÀëСÓÚ»òµÈÓÚ k µÄËùÓнڵãÒÔ¼°ËüÃÇÖ®¼äµÄËùÓбß)ʱ,Èà f k ( u , v ) f_k(u,v) fk?(u,v)±íʾ u ºÍ v Ö®¼äµÄ½á¹¹¾àÀë¡£ ÌرðµØ,¶¨Òå:
f k ( u , v ) = f k ? 1 ( u , v ) + g ( s ( R k ( u ) ) , s ( R k ( v ) ) ) , k ¡Ý ?? 0 a n d ¨O R k ( u ) ¨O , ¨O R k ( v ) ¨O ¡Ý ? 0 ; f_k(u,v)=f_{k-1}(u,v)+g(s(R_k(u)),s(R_k(v))),k \geq\;0 \quad and |R_k(u)|,|R_k(v)| \geq\ 0; fk?(u,v)=fk?1?(u,v)+g(s(Rk?(u)),s(Rk?(v))),k¡Ý0and¨ORk?(u)¨O,¨ORk?(v)¨O¡Ý?0;
ÆäÖÐ g ( D 1 , D 2 ) ¡Ý ?? 0 g(D_1,D_2) \geq\; 0 g(D1?,D2?)¡Ý0±íʾ¶ÈÊýÐòÁÐ D 1 , D 2 D_1,D_2 D1?,D2?Ö®¼äµÄ¾àÀë,ÇÒ f ? 1 = 0 f_{-1}=0 f?1?=0 f k ( u , v ) f_k(u,v) fk?(u,v)ÊǵÝÔöµÄ,µ±ÇÒ½öµ±½ÚµãuºÍ½ÚµãvÖ®¼ä¾àÀ벻СÓÚk¡£ÈôuºÍvÖ®¼äÊÇͬ¹¹µÄ,²¢ÇÒuÓ³Éäµ½v,Ôò f k ? 1 ( u , v ) = 0 f_{k-1}(u,v)=0 fk?1?(u,v)=0¡£

²ÉÓÃDTW(Dynamic Time Warping)À´²âÁ¿Á½¸öÓÐÐò¶ÈÐòÁÐÖ®¼äµÄ¾àÀë,Ëü¿ÉÒԺܺõش¦Àí²»Í¬´óСµÄÐòÁв¢ÇÒËÉÉ¢µØ±È½ÏÐòÁÐģʽ¡£Ê¹ÓÃËüµÄÔ­ÒòÊÇËü³Í·£ÁËÁ½¸ö½ÚµãµÄ¶ÈÊý¶¼±È½ÏСʱÁ½ÕߵIJîÒì¡£¸ø¶¨ÐòÁÐÔªËصľàÀ뺯Êý d ( a , b ) d(a,b) d(a,b),DTWÆ¥Åäÿ¸öÔªËØ a ¡Ê A , b ¡Ê B a¡ÊA,b¡ÊB a¡ÊA,b¡ÊB,ʹµÃÆ¥ÅäÔªËØÖ®¼äµÄ¾àÀë×ܺÍ×îС»¯¡£²ÉÓÃÒÔϾàÀ뺯Êý:
d ( a , b ) = m a x ( a , b ) m i n ( a , b ) ? 1 d(a,b)=\frac{max(a,b)}{min(a,b)}-1 d(a,b)=min(a,b)max(a,b)??1
µ±a=bʱ,Ôò d ( a , b ) = 0 d(a,b)=0 d(a,b)=0¡£

Constructing the context graph

¹¹½¨²ã´Î´øȨͼ

k ? k^* k?±íʾÍøÂçµÄÖ±¾¶¡£Ã¿²ã k = 0 , . . . , k ? k=0,...,k^* k=0,...,k?ÓÉÒ»¸ö´ø½Úµã¼¯VµÄ¼ÓȨÎÞÏòͼÐγÉ,Ò»²ãÖÐÁ½¸ö½ÚµãÖ®¼äµÄ±ßȨÖØÓÉÏÂʽ¸ø³ö:
w k ( u , v ) = e ? f k ( u , v ) , k = 0 , . . . , k ? w_k(u,v)=e^{-f_k(u,v)},k=0,...,k^* wk?(u,v)=e?fk?(u,v),k=0,...,k?
µÚk²ãµÄ½Úµãu»áÁ¬½Óµ½µÚk+1²ãºÍµÚk-1²ã¡£²ã¼äµÄ±ßȨÖØÈçÏÂ:
w ( u k , u k + 1 ) = l o g ( ¦£ k ( u ) + e ) , k = 0 , . . . , k ? ? 1 w(u_k,u_{k+1})=log(\Gamma_k(u)+e),k=0,...,k^*-1 w(uk?,uk+1?)=log(¦£k?(u)+e),k=0,...,k??1

w ( u k , u k ? 1 ) = 1 , k = 1 , . . . , k ? w(u_k,u_{k-1})=1,k=1,...,k^* w(uk?,uk?1?)=1,k=1,...,k?

ÆäÖÐ ¦£ k ( u ) \Gamma_k(u) ¦£k?(u)ÊÇÓëuÏà¹ØÇÒȨÖØ´óÓÚµÚk²ãÖÐÍêÕûµÄƽ¾ù±ßȨÖصıßÊý,ÈçÏÂ
¦£ k ( u ) = ¡Æ v ¡Ê V 1 ( w k ( u , v ) > w k £þ ) \Gamma_k(u)=\sum_{v¡ÊV}1(w_k(u,v)>\overline{w_k}) ¦£k?(u)=v¡ÊV¡Æ?1(wk?(u,v)>wk??)
ÆäÖÐ ( w k ) £þ = ¡Æ u , v ¡Ê ( V 2 ) w k ( u , v ) / ( V 2 ) \overline{(w_k)}=\sum_{u,v¡Ê \begin{pmatrix}V \\ 2\end{pmatrix}} w_k(u,v)/ \begin{pmatrix} V \\ 2 \end{pmatrix} (wk?)?=¡Æu,v¡Ê(V2?)?wk?(u,v)/(V2?)¡£

¦£ k ( u ) \Gamma_k(u) ¦£k?(u)¶ÈÁ¿Á˽ڵãuÓëµÚk²ãÆäËû½ÚµãµÄÏàËÆÐÔ¡£Èôµ±Ç°²ãÖÐÓÐÐí¶àÏàËƵĽڵã,ÄÇôËüÓ¦¸Ã¸ü¸Ä²ãÒÔ»ñµÃ¸üϸ»¯µÄÉÏÏÂÎÄ,ͨ¹ýÏòÉÏÒƶ¯Ò»²ã,ÏàËƽڵãµÄÊýÁ¿Ö»»á¼õÉÙ,×îºó,logº¯ÊýÖ»ÊǼõÉÙÁ˸ø¶¨²ãÖÐÓëuÏàËƵĽڵãµÄÊýÁ¿¡£

Generating context for nodes

²ÉÑù»ñÈ¡¶¥µãÐòÁÐ

Çë×¢Òâ,M ÍêÈ«²»Ê¹ÓñêÇ©ÐÅÏ¢À´²¶»ñ G ÖнڵãÖ®¼ä½á¹¹ÏàËÆÐԵĽṹ¡£ Óë֮ǰµÄ¹¤×÷Ò»Ñù,struct2vec ʹÓÃËæ»úÓÎ×ßÉú³É½ÚµãÐòÁÐÀ´È·¶¨¸ø¶¨½ÚµãµÄÉÏÏÂÎÄ¡£ ÌرðÊÇ,ÎÒÃÇ¿¼ÂÇÁËÒ»¸öÓÐÆ«Ëæ»úÓÎ×ß,ËüÔÚ M ÖÜΧÒƶ¯,¸ù¾Ý M µÄȨÖØ×ö³öËæ»úÑ¡Ôñ¡£ÔÚÿһ²½Ö®Ç°,Ëæ»úÓÎ×ßÊ×ÏȾö¶¨ÊǸıä²ã»¹ÊÇÔÚµ±Ç°²ãÉÏÓÎ×ß(¸ÅÂÊ q > 0 Ëæ»úÓÎ×ßÁôÔÚµ±Ç°²ã)¡£

¼øÓÚËü½«ÁôÔÚµ±Ç°²ã,ÔÚµÚk²ã´Ó½ÚµãuÓÎ×ßÖÁ½ÚµãkµÄ¸ÅÂÊΪ
p k ( u , v ) = e ? f k ( u , v ) Z k ( u ) p_k(u,v)=\frac{e^{-f_k(u,v)}}{Z_k(u)} pk?(u,v)=Zk?(u)e?fk?(u,v)?
ÆäÖÐ Z k ( u ) = ¡Æ v ¡Ê V , v ¡Ù u e ? f k ( u , v ) Z_k(u)=\sum_{v¡ÊV,v¡Ùu}e^{-f_k(u,v)} Zk?(u)=¡Æv¡ÊVvªÁ?=u?e?fk?(u,v)ÊǵÚk²ãÖж¥µãuµÄ¹éÒ»»¯Òò×Ó¡£

Ëæ»úÓÎ×ßÒÔ¸ÅÂÊ 1 -q ¾ö¶¨¸Ä±ä²ã,²¢ÒÔÓë±ßȨÖسÉÕý±ÈµÄ¸ÅÂÊÒƶ¯µ½µÚ k + 1 ²ã»òµÚ k - 1 ²ã(²ãÔÊÐí)ÖеÄÏàÓ¦½Úµã¡£
p k ( u k , u k + 1 ) = w ( u k , u k + 1 ) w ( u k , u k + 1 ) + w ( u k , u k ? 1 ) p k ( u k , u k ? 1 ) = 1 ? p k ( u k , u k + 1 ) p_k(u_k,u_{k+1})=\frac{w(u_k,u_{k+1})}{w(u_k,u_{k+1})+w(u_k,u_{k-1})} \\ p_k(u_k,u_{k-1})=1-p_k(u_k,u_{k+1}) pk?(uk?,uk+1?)=w(uk?,uk+1?)+w(uk?,uk?1?)w(uk?,uk+1?)?pk?(uk?,uk?1?)=1?pk?(uk?,uk+1?)
×¢Òâÿ´ÎÓÎ×ßÖÁÒ»¸ö²ãʱ,Ëü¶¼»á½«µ±Ç°¶¥µã×÷ΪÆäÉÏÏÂÎĵÄÒ»²¿·Ö,¶ÀÁ¢Óڸò㡣Òò´Ë,¶¥µã u ¿ÉÄÜÔÚµÚ k ²ã¾ßÓиø¶¨µÄÉÏÏÂÎÄ(ÓɸòãµÄ½á¹¹ÏàËÆÐÔÈ·¶¨),µ«ÔÚµÚ k + 1 ²ã¾ßÓиÃÉÏÏÂÎĵÄ×Ó¼¯,ÒòΪËæ×ÅÎÒÃÇÒƶ¯µ½¸ü¸ß²ã,½á¹¹ÏàËÆÐÔ²»»áÔö¼Ó¡£ ¿ç²ãµÄ·Ö²ãÉÏÏÂÎĵĸÅÄîÊÇËùÌá³ö·½·¨µÄ»ù±¾·½Ãæ¡£

×îºó,¶ÔÓÚÿ¸ö½Úµã u ¡Ê V ,ÔÚµÚ 0 ²ã¶ÔÓ¦µÄ¶¥µã¿ªÊ¼Ëæ»úÓÎ×ß¡£Ëæ»úÓÎ×ßÓй̶¨ÇÒÏà¶Ô½Ï¶ÌµÄ³¤¶È(²½Êý),²¢ÇҸùý³ÌÖظ´Ò»¶¨´ÎÊý,´Ó¶ø²úÉú¶à¸ö¶ÀÁ¢µÄÓÎ×ß(¼´½Úµãu µÄ¶à¸öÉÏÏÂÎÄ)¡£

Learning a language model

ÓïÑÔÄ£ÐÍѧϰ Skip-Gram

Hierarchical Softmax(·Ö²ãSoftmax),ʹÓöþÔª·ÖÀàÆ÷Ê÷¼ÆËãÌõ¼þ·ûºÅ¸ÅÂÊ¡£

¶ÔÓÚÿ¸ö½Úµã v j ¡Ê V v_j¡ÊV vj?¡ÊV,·Ö²ãSoftmaxÔÚ·ÖÀàÊ÷ÖзÖÅäÒ»¸öÌض¨µÄ·¾¶,ÓÉÒ»×éÊ÷½áµã n ( v j , 1 ) , n ( v j , 2 ) , . . . , n ( v j , h ) , Æä ÖÐ n ( v j , h ) = v j n(v_j,1),n(v_j,2),...,n(v_j,h),ÆäÖÐn(v_j,h)=v_j n(vj?,1),n(vj?,2),...,n(vj?,h)ÆäÖÐn(vj?,h)=vj?¡£ÔÚÕâЩÉèÖÃÖÐ,ÎÒÃÇÓÐ
P ( v j ¨O v i ) = ¡Ç k = 1 h C ( n ( v j , k ) , v i ) P(v_j|v_i)=\prod _{k=1}^hC(n(v_j,k),v_i) P(vj?¨Ovi?)=k=1¡Çh?C(n(vj?,k),vi?)
ÆäÖÐCÊÇ´æÔÚÓÚÊ÷ÖÐÿ¸ö½ÚµãµÄ¶þÔª·ÖÀàÆ÷¡£Çë×¢Òâ,ÓÉÓÚ Hierarchical Sofmax ÔÚ¶þ²æÊ÷ÉÏÔËÐÐ,ÎÒÃÇÓÐ$ h = O(log |V|)$¡£

Complexity and optimizations

O ( k ? n 3 ) O(k*n^3) O(k?n3)

ÓÅ»¯ÈçÏÂ:

¼õÉÙ¶ÈÐòÁеij¤¶È(OPT1)¡£Í¨¹ý¶ÈÊýƵ´Îͳ¼ÆÀ´Ñ¹ËõÓÐÐò¶ÈÊýÐòÁС£Áî A ¡® ºÍ B ¡® A^`ºÍB` A¡®ºÍB¡®·Ö±ð±íʾAºÍBµÄѹËõ¶ÈÐòÁС£ÓÉÓÚ A ¡ä ºÍ B ¡ä µÄ Ôª ËØ ÊÇ Ôª ×é , °´ Èç Ï ·½ ʽ µ÷ Õû D T W ³É ¶Ô ¾à Àë º¯ Êý ¡£ A'ºÍB'µÄÔªËØÊÇÔª×é,°´ÈçÏ·½Ê½µ÷ÕûDTW³É¶Ô¾àÀ뺯Êý¡£ A¡äºÍB¡äµÄÔªËØÊÇÔª×é°´ÈçÏ·½Ê½µ÷ÕûDTW³É¶Ô¾àÀ뺯Êý¡£
d i s t ( a , b ) = ( m a x ( a 0 , b 0 ) m i n ( a 0 , b 0 ) ? 1 ) m a x ( a 1 , b 1 ) dist(a,b) = (\frac{max(a_0,b_0)}{min(a_0,b_0)} - 1)max(a_1,b_1) dist(a,b)=(min(a0?,b0?)max(a0?,b0?)??1)max(a1?,b1?)
ÆäÖÐ a = ( a 0 , a 1 ) ºÍ b = ( b 0 , b 1 ) a=(a_0,a_1)ºÍb=(b_0,b_1) a=(a0?,a1?)ºÍb=(b0?,b1?)·Ö±ðÊÇ A 0 ºÍ B 0 A_0ºÍB_0 A0?ºÍB0?ÖеÄÔª×é; a 0 , b 0 a_0,b_0 a0?,b0?ÊǶÈÊý; a 1 ºÍ b 1 a_1ºÍb_1 a1?ºÍb1?ÊdzöÏֵĴÎÊý¡£

¼õÉٳɶÔÏàËƶȼÆËãµÄ´ÎÊý(OPT2)¡£

¶ÔÓÚÿ¸ö¼¶±ðk,½«Ã¿¸ö½ÚµãµÄ³É¶ÔÏàËƶԼÆËãµÄÊýÁ¿ÏÞÖÆΪ O ( l o g n ) O(logn) O(logn)¡£Áî J u ±í ʾ Ϊ M ÖÐ ½« ³É Ϊ ½Ú µã u µÄ ÁÚ ¾Ó ½Ú µã ¼¯ J_u±íʾΪMÖн«³ÉΪ½ÚµãuµÄÁھӽڵ㼯 Ju?±íʾΪMÖн«³ÉΪ½ÚµãuµÄÁھӽڵ㼯,Õâ¶ÔÓÚÿ¸ö¼¶±ð¶¼ÊÇÏàͬµÄ¡£ J u J_u Ju?Ó¦¸Ã¾ßÓÐÔڽṹÉÏÓëu×îÏàËƵĽڵ㡣ΪÁËÈ·¶¨ J u J_u Ju?,Ñ¡È¡¶ÈÊýÓëu×îÏàËƵĽڵ㡣¿ÉÒÔͨ¹ý¶ÔÍøÂçÖÐËùÓнڵãµÄÓÐÐò¶ÈÊýÐòÁÐ(¶ÔÓÚ½ÚµãuµÄ¶ÈÊý)Ö´Ðжþ·ÖËÑË÷,²¢ÔÚËÑË÷Íê³ÉºóÔÚÿ¸ö·½ÏòÉÏÈ¡ l o g n logn logn¸öÁ¬Ðø½Úµã,À´½øÐÐÓÐЧ¼ÆËã¡£¼ÆËãËùÓнڵãµÄ J u J_u Ju?¾ßÓи´ÔÓ¶È O ( n l o g n ) O(nlogn) O(nlogn)¡£

¼õÉÙ²ãÊý(OPT3)

ÆÀ¹ÀÁ½¸ö½ÚµãÖ®¼ä½á¹¹ÏàËÆÐÔµÄÖØÒªÐÔËæ×ÅkµÄÔö´ó¶ø½µµÍ¡£µ± k ½Ó½ü k ? k^* k? ʱ,»·µÄ¶ÈÊýÐòÁеij¤¶È±äµÃÏà¶Ô½Ï¶Ì,Òò´Ë f k ( u , v ) f_k (u,v) fk?(u,v) Óë$f_{k-1}(u,v) $ûÓÐÌ«´óÇø±ð¡£ Òò´Ë,ÎÒÃǽ« M ÖеIJãÊýÏÞÖÆΪһ¸ö¹Ì¶¨³£Êý k ¡® < k ? k^` < k^* k¡®<k? ,²¶»ñÓÃÓÚÆÀ¹À½á¹¹ÏàËÆÐÔµÄ×îÖØÒªµÄ²ã¡£ ÕâÏÔÈ»½µµÍÁ˹¹½¨ M µÄ¼ÆËãºÍÄÚ´æÒªÇó¡£

Experimental Evaluation

B ( h , k ) B(h,k) B(h,k)±íʾΪ ( h , k ) (h,k) (h,k)¸ÜÁåͼ,ËüÃǶ¼ÓÉÁ½¸öÍêÕûµÄͼ K 1 , K 2 K_1,K_2 K1?,K2?(ÿ¸ö¶¼º¬ÓÐh¸ö½Úµã)×é³É,ÇÒÓɳ¤¶ÈΪkµÄ·¾¶Í¼PÁ¬½Ó¡£Á½¸ö½Úµã b 1 ¡Ê V ( K 1 ) ºÍ b 2 ¡Ê V ( k 2 ) b_1¡ÊV(K_1)ºÍb_2¡ÊV(k_2) b1?¡ÊV(K1?)ºÍb2?¡ÊV(k2?)×÷ΪÇÅÁº¡£Ê¹Óà p 1 , . . . , p 2 ±í ʾ V ( P ) p_1,...,p_2±íʾV(P) p1?,...,p2?±íʾV(P) Á¬ ½Ó b 1 ºÍ p 1 , b 2 ºÍ p k Á¬½Ób_1ºÍp_1,b_2ºÍp_k Á¬½Ób1?ºÍp1?,b2?ºÍpk?,´Ó¶øÁ¬½ÓÈý¸öͼ¡£

ͼ±íʾѧϰ½á¹ûÈçÏÂ(×ÅÉ«ÏàͬµÄ½Úµã¼´ÊÇËã·¨±íʾѧϰµÃµ½µÄ¾ßÓÐÏàËƽṹµÄ½Úµã):

ÔÚÕâÀï²åÈëͼƬÃèÊö

¹¹½¨¹ØÓÚkarate_clubµÄ¾µÏñͼ,´Ó¶øÑéÖ¤¸÷Ëã·¨µÄ½ÚµãÏàËƶÈ,²¢¶ÔÏàÓ¦½Úµã½øÐÐÆ¥Åä¡£

ʵÑéÊý¾Ý¼¯:karate_club¡¢Brazilian air-trafc network¡¢American air-trafc network¡¢European air-trafc network

¶Ô±ÈËã·¨:deepwalk,node2vec,struc2vec(opt1|opt2|opt3)

ÆÀ¹ÀÖ¸±ê:µ¥±êǩ׼ȷ¶È(0/1,׼ȷÂÊ)


²Î¿¼ÎÄÏ×

ÂÛÎÄ:struc2vec: Learning Node Representations from Structural Identity

DTW¼ò½é

¡¾ÍøÂç±íʾѧϰ¡¿struc2vec

¡¾Graph Embedding¡¿Struc2Vec:Ëã·¨Ô­Àí,ʵÏÖºÍÓ¦ÓÃ

  È˹¤ÖÇÄÜ ×îÐÂÎÄÕÂ
2022Îâ¶÷´ï»úÆ÷ѧϰ¿Î³Ì¡ª¡ªµÚ¶þ¿Î£¨Éñ¾­Íø
µÚÊ®ÎåÕ ¹æÔòѧϰ
FixMatch: Simplifying Semi-Supervised Le
Êý¾ÝÍÚ¾òJava¡ª¡ªKmeansËã·¨µÄʵÏÖ
´óÄÔƤ²ãµÄ·Ö¸î·½·¨
¡¾·­Òë¡¿GPT-3ÊÇÈçºÎ¹¤×÷µÄ
ÂÛÎıʼÇ:TEACHTEXT: CrossModal Generaliz
python´ÓÁãѧ£¨Áù£©
Ïê½âPython 3.x µ¼Èë(import)
¡¾´ð¶ÁÕßÎÊ27¡¿backtrader²»Ö§³Ö×îа汾µÄ
ÉÏһƪÎÄÕ      ÏÂһƪÎÄÕ      ²é¿´ËùÓÐÎÄÕÂ
¼Ó:2021-09-07 10:48:58  ¸ü:2021-09-07 10:51:04 
 
¿ª·¢: C++֪ʶ¿â Java֪ʶ¿â JavaScript Python PHP֪ʶ¿â È˹¤ÖÇÄÜ Çø¿éÁ´ ´óÊý¾Ý Òƶ¯¿ª·¢ ǶÈëʽ ¿ª·¢¹¤¾ß Êý¾Ý½á¹¹ÓëËã·¨ ¿ª·¢²âÊÔ ÓÎÏ·¿ª·¢ ÍøÂçЭÒé ϵͳÔËά
½Ì³Ì: HTML½Ì³Ì CSS½Ì³Ì JavaScript½Ì³Ì GoÓïÑÔ½Ì³Ì JQuery½Ì³Ì VUE½Ì³Ì VUE3½Ì³Ì Bootstrap½Ì³Ì SQLÊý¾Ý¿â½Ì³Ì CÓïÑÔ½Ì³Ì C++½Ì³Ì Java½Ì³Ì Python½Ì³Ì Python3½Ì³Ì C#½Ì³Ì
ÊýÂë: µçÄÔ ±Ê¼Ç±¾ ÏÔ¿¨ ÏÔʾÆ÷ ¹Ì̬ӲÅÌ Ó²ÅÌ ¶ú»ú ÊÖ»ú iphone vivo oppo СÃ× »ªÎª µ¥·´ ×°»ú ͼÀ­¶¡

360ͼÊé¹Ý ¹ºÎï Èý·á¿Æ¼¼ ÔĶÁÍø ÈÕÀú ÍòÄêÀú 2024Äê11ÈÕÀú -2024/11/27 15:53:56-

ͼƬ×Ô¶¯²¥·ÅÆ÷
¡ýͼƬ×Ô¶¯²¥·ÅÆ÷¡ý
TxTС˵ÔĶÁÆ÷
¡ýÓïÒôÔĶÁ,С˵ÏÂÔØ,¹ÅµäÎÄѧ¡ý
Ò»¼üÇå³ýÀ¬»ø
¡ýÇáÇáÒ»µã,Çå³ýϵͳÀ¬»ø¡ý
ͼƬÅúÁ¿ÏÂÔØÆ÷
¡ýÅúÁ¿ÏÂÔØͼƬ,ÃÀŮͼ¿â¡ý
  ÍøÕ¾ÁªÏµ: qq:121756557 email:121756557@qq.com  ITÊýÂë