IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 吴恩达·Machine Learning || chap12 Support Vector Machines简记 -> 正文阅读

[人工智能]吴恩达·Machine Learning || chap12 Support Vector Machines简记

12-1 Optimization objective

Alternative view of logistic regression

h θ ( x ) = 1 1 + e ? θ T x h _ { \theta } ( x ) = \frac { 1 } { 1 + e ^ { - \theta ^ { T } x } } hθ?(x)=1+e?θTx1?

If y = 1 y=1 y=1,we want h θ ( x ) ≈ 1 , θ T x ? 0 h_{\theta}(x)\approx1, \theta^Tx\gg0 hθ?(x)1,θTx?0

If y = 0 y=0 y=0,we want h θ ( x ) ≈ 0 , θ T x ? 0 h_{\theta}(x)\approx0, \theta^Tx\ll0 hθ?(x)0,θTx?0

? Cost of example: ? ( y log ? h θ ( x ) + ( 1 ? y ) log ? ( 1 ? h θ ( x ) ) ) - ( y \log h _ { \theta } ( x ) + ( 1 - y ) \log ( 1 - h _ { \theta } ( x ) ) ) ?(yloghθ?(x)+(1?y)log(1?hθ?(x))) = ? y log ? 1 1 + e ? θ r x ? ( 1 ? y ) log ? ( 1 ? 1 1 + e ? θ r x ) = - y \log \frac { 1 } { 1 + e ^ { - \theta ^ { r } x } } - ( 1 - y ) \log ( 1 - \frac { 1 } { 1 + e ^ { - \theta ^ { r } x } } ) =?ylog1+e?θrx1??(1?y)log(1?1+e?θrx1?)

Support vector machine

Logistic regression:
m i n θ 1 m [ ∑ i = 1 m y ( i ) ( ? log ? h θ ( x ( i ) ) + ( 1 ? y ( i ) ) ( ? log ? ( 1 ? h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 min_\theta\frac { 1 } { m } [ \sum _ { i = 1 } ^ { m } y ^ { ( i ) }( -\log h _ { \theta } ( x ^ { ( i ) } ) + ( 1 - y ^ { ( i ) } ) (-\log ( 1 - h _ { \theta } ( x ^ { ( i ) } ) ) ] + \frac { \lambda } { 2 m } \sum _ { j = 1 } ^ { n } \theta^2_j minθ?m1?[i=1m?y(i)(?loghθ?(x(i))+(1?y(i))(?log(1?hθ?(x(i)))]+2mλ?j=1n?θj2?
support vector machine:
在这里插入图片描述
m i n θ C ∑ i = 1 m [ y ( i ) c o s t 1 ( θ T x ( i ) ) + ( 1 ? y ( i ) ) c o s t 0 ( θ T x ( i ) ) ] + 1 2 ∑ i = 1 n θ j 2 min _ { \theta} C \sum _ { i = 1 } ^ { m }[ y ^ { ( i ) } {cost} _ { 1 } ( \theta ^ { T } x ^ { ( i ) } ) + ( 1 - y ^ { ( i ) } ) {cost} _ { 0 } ( \theta ^ { T } x ^ { ( i ) } ) ] + \frac { 1 } { 2 } \sum _ { i = 1 } ^ { n}\theta_j^2 minθ?Ci=1m?[y(i)cost1?(θTx(i))+(1?y(i))cost0?(θTx(i))]+21?i=1n?θj2?

SVM hypothesis
m i n θ C ∑ i = 1 m [ y ( i ) c o s t 1 ( θ T x ( i ) ) + ( 1 ? y ( i ) ) c o s t 0 ( θ T x ( i ) ) ] + 1 2 ∑ i = 1 n θ j 2 min _ { \theta} C \sum _ { i = 1 } ^ { m }[ y ^ { ( i ) } {cost} _ { 1 } ( \theta ^ { T } x ^ { ( i ) } ) + ( 1 - y ^ { ( i ) } ) {cost} _ { 0 } ( \theta ^ { T } x ^ { ( i ) } ) ] + \frac { 1 } { 2 } \sum _ { i = 1 } ^ { n}\theta_j^2 minθ?Ci=1m?[y(i)cost1?(θTx(i))+(1?y(i))cost0?(θTx(i))]+21?i=1n?θj2?
Hypothesis:

h θ ( x ) = { 1 i f ?? θ T x ≥ 0 0 o t h e r w i s e h_\theta(x)=\begin{cases}1\quad if\;\theta^Tx\ge0\\0\quad otherwise\end{cases} hθ?(x)={1ifθTx00otherwise?

12-2 Large Margin Intuition

Support Vector Machine

if y = 1 y=1 y=1,we want $\theta^Tx\ge1\quad(\text{not just ≥ \ge 0})$

在这里插入图片描述

if y = 0 y=0 y=0,we want $\theta^Tx\le-1\quad(\text{not just < < < 0})$
在这里插入图片描述

SVM Decision Boundary

SVM Decision Boundary: Linearly separable case

Large margin classifier in presence of outliers

12-3 The mathematics behind large margin classification (optional)

Vector Inner Product 向量内积
在这里插入图片描述

SVM Decision Boundary


在这里插入图片描述

12-4 Kernels I

核函数

Non-linear Decision Boundary

predict y=1 if θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 x 2 + θ 4 x 1 2 + θ 5 x 2 2 + ? ≥ 0 { \theta _ { 0 } + \theta _ { 1 } x _ { 1 } + \theta _ { 2 } x _ { 2 } + \theta _ { 3 } x _ { 1 } x _ { 2 } } { + \theta _ { 4 } x _ { 1 } ^ { 2 } + \theta _ { 5 } x _ { 2 } ^ { 2 } + \cdots \geq 0 } θ0?+θ1?x1?+θ2?x2?+θ3?x1?x2?+θ4?x12?+θ5?x22?+?0

h θ ( x ) = { 1 i f ?? θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 x 2 + ? ≥ 0 0 o t h e r w i s e h_\theta(x)=\begin{cases}1\quad if\;{ \theta _ { 0 } + \theta _ { 1 } x _ { 1 } + \theta _ { 2 } x _ { 2 } + \theta _ { 3 } x _ { 1 } x _ { 2 } } { + \cdots \geq 0 }\\0\quad otherwise\end{cases} hθ?(x)={1ifθ0?+θ1?x1?+θ2?x2?+θ3?x1?x2?+?00otherwise?

Given x,compute new feature depending on proximity to landmarks l ( 1 ) , l ( 2 ) , l ( 3 ) l^{(1)},l^{(2)},l^{(3)} l(1),l(2),l(3)

Kernels and Similarity

f 1 = s i m i l a r i t y ( x , l ( 1 ) ) = e x p ( ? ∣ ∣ x ? l ( 1 ) ∣ ∣ 2 2 σ 2 ) = exp ? ( ? ∑ j = 1 n ( x j ? l j ( 1 ) ) 2 2 σ 2 ) f_1=similarity(x,l^{(1)})=exp(-\frac{||x-l^{(1)}||^2}{2\sigma^2})=\operatorname { exp } ( - \frac { \sum _ { j = 1 } ^ { n } ( x _ { j } - l _j^{ ( 1 ) } ) ^ { 2 } } { 2 \sigma ^ { 2 } } ) f1?=similarity(x,l(1))=exp(?2σ2x?l(1)2?)=exp(?2σ2j=1n?(xj??lj(1)?)2?)

I f ?? x ≈ l ( 1 ) : If \; x\approx l^{(1)}: Ifxl(1): f 1 ≈ 1 f_1\approx 1 f1?1

I f ?? x ?? i f ?? f a r ?? f r o m ?? l ( 1 ) : If \;x\; if \; far \; from\;l^{(1)}: Ifxiffarfroml(1): f 1 ≈ 0 f_1\approx 0 f1?0

在这里插入图片描述

12-5 Kernels II

Choosing the landmarks

SVM with Kernels

Given ( x ( 1 ) , y ( 1 ) ) , ( x ( 2 ) , y ( 2 ) ) , ? ? , ( x ( m ) , y ( m ) ) ( x ^ { ( 1 ) } , y ^ { ( 1 ) } ) , ( x ^ { ( 2 ) } , y ^ { ( 2 ) } ) , \cdots , ( x ^ { ( m ) } , y ^ { ( m ) } ) (x(1),y(1)),(x(2),y(2)),?,(x(m),y(m))

choose l ( 1 ) = x ( 1 ) , l ( 2 ) = x ( 2 ) , ? ? , l ( m ) = x ( m ) l ^ { ( 1 ) } = x ^ { ( 1 ) } , l ^ { ( 2 ) } = x ^ { ( 2 ) } , \cdots , l ^ { ( m ) } = x ^ { ( m ) } l(1)=x(1),l(2)=x(2),?,l(m)=x(m)

Given example x:

? f 1 = s i m i l a r i t y ( x , l ( 1 ) ) f 2 = s i m i l a r i t y ( x , l ( 2 ) ) ? \begin{array}{l}f_1=similarity(x,l^{(1)})\\f_2=similarity(x,l^{(2)})\\\cdots\end{array} f1?=similarity(x,l(1))f2?=similarity(x,l(2))??

For training example ( x ( i ) , y ( i ) ) ? f ( i ) (x^{(i)},y^{(i)})\longrightarrow f^{(i)} (x(i),y(i))?f(i)


Hypothesis: Given x,compute features f ∈ R m + 1 f\in \mathbb{R}^{m+1} fRm+1

Predict “y=1” if θ T f ≥ 0 \theta^T f\ge 0 θTf0

Training: m i n θ C ∑ i = 1 m [ y ( i ) c o s t 1 ( θ T f ( i ) ) + ( 1 ? y ( i ) ) c o s t 0 ( θ T f ( i ) ) ] + 1 2 ∑ i = 1 n θ j 2 min _ { \theta} C \sum _ { i = 1 } ^ { m }[ y ^ { ( i ) } {cost} _ { 1 } ( \theta ^ { T } f ^ { ( i ) } ) + ( 1 - y ^ { ( i ) } ) {cost} _ { 0 } ( \theta ^ { T } f ^ { ( i ) } ) ] + \frac { 1 } { 2 } \sum _ { i = 1 } ^ { n}\theta_j^2 minθ?Ci=1m?[y(i)cost1?(θTf(i))+(1?y(i))cost0?(θTf(i))]+21?i=1n?θj2?

SVM parameters:

C ( = 1 λ ) C(=\frac{1}{\lambda}) C(=λ1?).

Large C: Lower bias, high variance.(small λ \lambda λ)
Small C: Higher bias, low variance.( l a r g e ?? λ large\;\lambda largeλ)

σ 2 \sigma^2 σ2

Large σ 2 \sigma^2 σ2: Features f i f_i fi?; vary more smoothly. Higher bias, lower variance.

Small σ 2 \sigma^2 σ2: Features f i f_i fi?; vary less smoothly. Lower bias, Higher variance.

12-6 Using an SVM

Use SVM software package (e.g. liblinear, libsvm, …) to solve for parameters θ \theta θ

Need to specify:

Choice of parameter C

Choice of kernel (similarity function):

? E.g. No kernel (“linear kernel”)

θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 + ? ≥ 0 ? n ?? l a r g e , m ?? s m a l l \theta _ { 0 } + \theta _ { 1 } x _ { 1 } + \theta _ { 2 } x _ { 2 } + \theta _ { 3 } + \cdots \ge 0 \longrightarrow n\;large,m\;small θ0?+θ1?x1?+θ2?x2?+θ3?+?0?nlarge,msmall

? predict:“y=1” if θ T x ≥ 0 \theta^Tx\ge0 θTx0

? Gaussian kernel:

f i = e x p ( ? ∣ ∣ x ? l ( i ) ∣ ∣ 2 2 σ 2 ) , w h e r e ?? l ( i ) = x ( i ) f_i=exp(-\frac{||x-l^{(i)}||^2}{2\sigma^2}),where\;l^{(i)}=x^{(i)} fi?=exp(?2σ2x?l(i)2?),wherel(i)=x(i)

? Need to choose σ 2 \sigma^2 σ2

Kernel (similarity) functions:

function f= kernel(x1,x2)
	f=exp((-abs(x1-x2)^2)/(2*(sigma^2)))
return

Note: Do perform feature scaling before using the Gaussian kernel

=[](#4-3 Gradient descent in practice I: Feature Scaling)

Other choices of kernel

Note: Not all similarity functions similarity(x, l) make valid kernels (Need to satisfy technical condition called"mercer’s Theorem"to make sure SVM packages’ optimizations run correctly, and do not diverge)

Many of-the-shelf kernels avaliable:

  • Polynomial kernel: k ( x , l ) = ( x T l ) 2 , ( x T l + 1 ) 3 , ( x T l + 5 ) 4 k(x,l)=(x^Tl)^2,(x^Tl+1)^3,(x^Tl+5)^4 k(x,l)=(xTl)2,(xTl+1)3,(xTl+5)4
  • More esoteric: String kernel, chi-square kernel, histogram intersection kernel

Multi-class classification
在这里插入图片描述

Logistic regression vs. SVMS

m=number of features( x ∈ R n + 1 x\in \mathbb{R}^{n+1} xRn+1), m =number of training examples
If n is large(relative to m)
Use logistic regression, or SVM without a kernel (“linear kernel”)

If n is small, m is intermediate:
Use SVM with Gaussian kernel

If m is small, m is large:
Create/add more features, then use logistic regression or SVM without a kernel

Neural network likely to work well for most of these settings, but may be slower to train

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-09-07 10:48:58  更:2021-09-07 10:51:29 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 19:44:48-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码