IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 计算机视觉 | 面试题:10、梯度消失和爆炸以及解决方法 -> 正文阅读

[人工智能]计算机视觉 | 面试题:10、梯度消失和爆炸以及解决方法

问题

梯度消失无论是笔试还是面试都是常客了,其实对应于梯度消失,还有一个梯度爆炸的概念,这又是什么导致的呢?下面我们将根据公式推导来解释何为梯度消失与梯度爆炸。

梯度消失和梯度爆炸的表现

网络层数越多,模型训练的时候便越容易出现 梯度消失(gradient vanish) 和 梯度爆炸(gradient explod) 这种梯度不稳定的问题。假设现在有一个含有3层隐含层的神经网络:

在这里插入图片描述

**梯度消失发生时的表现是:**靠近输出层的 hidden layer 3 的权值更新正常,但是靠近输入层的 hidden layer 1 的权值更新非常慢,导致其权值几乎不变,仍接近于初始化的权值。这就导致 hidden layer 1 相当于只是一个映射层,对所有的输入做了一个函数映射,这时的深度学习网络的学习等价于只有后几层的隐含层网络在学习。

**梯度爆炸发生时的表现是:**当初始的权值太大,靠近输入层的 hidden layer 1 的权值变化比靠近输出层的 hidden layer 3 的权值变化更快。

所以梯度消失和梯度爆炸都是出现在靠近输入层的参数中。

产生梯度消失与梯度爆炸的根本原因

梯度消失分析

下图是

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-09-09 11:45:02  更:2021-09-09 11:45:29 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 15:26:06-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码