联合概率和条件概率
联合概率:包含多个条件,且所有条件同时成立的概率 记作:P(A,B)
条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率 记作:P(A|B)
- 特性:P(A1,A2|B) = P(A1|B)P(A2|B)
- 注意:此条件概率的成立,是由于A1,A2相互独立的结果
朴素贝叶斯-贝叶斯公式?
?sklearn朴素贝叶斯实现API
sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
27.朴素贝叶斯算法对新闻进行分类案例
sklearn20类新闻分类
20个新闻组数据集包含20个主题的18000个新闻组帖子
from sklearn.datasets import fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
def naivebayes():
news = fetch_20newsgroups(subset="all")
#进行数据分割
x_train, x_test, y_train, y_test = train_test_split(news.data,news.target,test_size=0.25)
#对数据集进行特征抽取
tf = TfidfVectorizer()
# 以训练集当中的词的列表进行每篇文章重要性统计
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names())
x_test = tf.transform(x_test)
#进行朴素贝叶斯算法
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train,y_train)
y_predict = mlt.predict(x_test)
print("预测的文章类别为:",y_predict)
print("准确率为:",mlt.score(x_test,y_test))
return None
naivebayes()
[[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
...
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]
[0. 0. 0. ... 0. 0. 0.]]
预测的文章类别为: [ 9 10 16 ... 8 8 8]
准确率为: 0.8442275042444821
28.朴素贝叶斯算法总结
朴素贝叶斯分类优缺点
优点:
- 朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
- 对缺失数据不太敏感,算法也比较简单,常用于文本分类。
- 分类准确度高,速度快
- 不需要调参数
缺点:
- 需要知道先验概率P(F1,F2,…|C),因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
29.精确率和召回率
分类模型的评估
- estimator.score() 一般最常见使用的是准确率,即预测结果正确的百分比
混淆矩阵
在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
精确率(Precision)与召回率(Recall)
精确率:预测结果为正例样本中真实为正例的比例(查得准)
召回率:真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)
其他分类标准,F1-score,反映了模型的稳健型??
分类模型评估API?
sklearn.metrics.classification_report?
classification_report
sklearn.metrics.classification_report(y_true, y_pred, target_names=None)
- y_true:真实目标值
- y_pred:估计器预测目标值
- target_names:目标类别名称
- return:每个类别精确率与召回率
30.交叉验证与网格搜索对K-近邻算法调优
交叉验证与网格搜索
超参数搜索-网格搜索?
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。?
K值 | K=3 | K=5 | K=7 | 模型 | 模型1 | 模型2 | 模型3 |
超参数搜索-网格搜索API
- sklearn.model_selection.GridSearchCV
GridSearchCV
sklearn.model_selection.GridSearchCV(estimator, param_grid=None,cv=None)
- 对估计器的指定参数值进行详尽搜索
- estimator:估计器对象
- param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
- cv:指定几折交叉验证
- fit:输入训练数据
- score:准确率 结果分析:
- best_score_:在交叉验证中测试的最好结果
- best_estimator_:最好的参数模型
- cv_results_:每次交叉验证后的测试集准确率结果和训练集准确率结果
from sklearn.neighbors import KNeighborsClassifier
import pandas as pd
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
def knncls():
# 读取收据
data = pd.read_csv("/Users/zhucan/Downloads/facebook-v-predicting-check-ins/train.csv")
# 处理数据
data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75")
time_value = pd.to_datetime(data["time"], unit="s")
# 把日期格式转换成字典格式
time_value = pd.DatetimeIndex(time_value)
# 构造一些特征
data["day"] = time_value.day
data["hour"] = time_value.hour
data["weekday"] = time_value.weekday
data = data.drop(["time"], axis=1)
# 把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id > 3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# 取出数据当中的特征值和目标值
y = data["place_id"]
x = data.drop(["place_id"], axis=1)
# 进行数据的分割训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
# 特征工程(标准化)
std = StandardScaler()
# 对特征值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.transform(x_test)
# 算法流程
knn = KNeighborsClassifier()
#构造一些参数的值进行搜索
param = {"n_neighbors":[3,5,10]}
# 进行网格搜寻
gc = GridSearchCV(knn,param_grid=param,cv=2)
gc.fit(x_train,y_train)
#预测准确率
print("在测试集上准确率:",gc.score(x_test,y_test))
print("在交叉验证当中最好的结果:",gc.best_score_)
print("选择最好的模型是:",gc.best_estimator_)
print("每个超参数每次交叉验证的结果:",gc.cv_results_)
return None
if __name__ == "__main__":
knncls()
在测试集上准确率: 0.4867612293144208
在交叉验证当中最好的结果: 0.44459331651954603
选择最好的模型是: KNeighborsClassifier(n_neighbors=10)
每个超参数每次交叉验证的结果: {'mean_fit_time': array([0.00378036, 0.00375617, 0.00387752]), 'std_fit_time': array([0.00018954, 0.0001651 , 0.00021541]), 'mean_score_time': array([0.14799261, 0.1550293 , 0.18861997]), 'std_score_time': array([0.00120759, 0.00264049, 0.00127685]), 'param_n_neighbors': masked_array(data=[3, 5, 10],
mask=[False, False, False],
fill_value='?',
dtype=object), 'params': [{'n_neighbors': 3}, {'n_neighbors': 5}, {'n_neighbors': 10}], 'split0_test_score': array([0.42701765, 0.44514502, 0.44813997]), 'split1_test_score': array([0.42354981, 0.43773644, 0.44104666]), 'mean_test_score': array([0.42528373, 0.44144073, 0.44459332]), 'std_test_score': array([0.00173392, 0.00370429, 0.00354666]), 'rank_test_score': array([3, 2, 1], dtype=int32)}
|