IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Generative Adversarial Active Learning生成性对抗性主动学习文献笔记 -> 正文阅读

[人工智能]Generative Adversarial Active Learning生成性对抗性主动学习文献笔记

文献1702.07956.pdf (arxiv.org)


生成性对抗性主动学习

介绍

? 这是第一个使用 GAN的主动学习工作,在它之后的GAN主动学习有不少,所以是首创性的工作,部分涉及分类的内容一笔带过。

背景1:主动学习

? 拿来了当初介绍主动学习的ppt,总得来说可以帮助我们用少量的标记获得不错的训练效果,其重点主要在于挑选送于专家人工标记样本的策略上。

?

?这是一个基于池主动学习与本文方法的一个对比,其中池指的是unlabeled,,其方法就是从池里面挑选一部分样本交给专家标记。本文则是由模型选择认为对自己有用需要注释的特例/生成新的标记特例。

? 本文是另一种主动学习方法:查询合成的方法(三种方法:查询合成,基于池和基于流)。

查询合成是模型选择认为对自己有用需要注释的特例/生成新的标记特例? ≈举一反三

但是缺点在于生成的特例可能无法识别,

本文的方法改进了之后这个缺点也明显改善了:

背景2:GAN

? gan稍微了解了一下,主要是用对抗方法来生成数据的一种模型,类似于我们的对抗游戏,双方通过对抗能力上涨的一个机制,核心思想源于博弈论的纳什均衡,主要由生成器和判别器组成。

? 其中生成器捕捉数据潜在分布,生成数据样本(就是假样本),判别器是二分类器,判断输入的数据是真实数据还是生成器生成的假数据。而学习过程就是寻找二者之间的纳什均衡,一个比较理想的状态就是判别器判别不出来是真数据还是假数据。

公式:

其中pdata是真实数据的基本分布, z是随机变量。 d和 G各有一组参数 θ1和 θ2.通过求解这个
博弈,得到了一个发生器 G。 在理想情况下,给定随机输入 z,我们有 G(z)∞pdata。

原始gan损失函数公式:

x是随机变量,D是对输入图像的一个判别,只有两种输出,1就是真样本,0为假样本(生成器生成的样本),?GZ是生成的假样本。maxD是针对训练判别器D的,第一项E因为输入采样自真实数据,所以我们期望D(x)趋近于1,也就是第一项更大。同理第二项E输入采样自G生成数据,所以我们期望D(G(z))趋近于0更好,也就是说第二项又是更大。所以是这一部分是期望训练使得整体更大了,也就是maxD的含义了。

?最大化log D(x))(即对于真实数据,希望其 渐渐趋向于1,就是更大更好),训练网络G最小化log(1 – D(G(z)))(对于这个输出是希望越小越好),即最大化D的损失

GAN: 原始损失函数详解 - walter_xh - 博客园 (cnblogs.com)?

生成式对抗网络(GAN)-(Generative Adversarial Networks)算法总结(从原始GAN到....目前)_人工智障之深度瞎学的博客-CSDN博客

?模型介绍

? 这个模型相当于是查询合成与不确定性采样原理结合而成,其中这里的不确定性指的是模型对数据集最不能确定的部分样本

?z是潜变量,G是通过GAN算法得到的,LactiveGZ是生成信息主动学习查询的损失函数,LregGZ是确保生成样本质量的正则化项。

实验步骤:通过求解(2)在所有未标记数据上训练生成器G,人工标注少量随机选取的样本后,用DCGAN生成目前判别器相对不确定的新数据交给人去标注,由此迭代训练分类模型。

改进用于本实验的公式:这里引入了一个SVM求超平面的一个概念,看不太懂

?实验:

模型训练的数据集是MNIST, SVHN and CIFAR-10,初始化50个个随机选择的样本初始化训练集。算法每次处理一批 10个新样本。

对比方法:passive GAN:从未标记的池中随机抽样实例。

Tong&Koller’s:SVM算法,用全部样本训练

randon sampling:从未标记池中随机采样实例

?MNIST数据集的主动学习结果,分类为5和7。结果是5次运行的平均值。将完全监督学习精度绘制为水平线进行比较。

缺点:

? G与D没有在迭代的过程中获得提升,并且太依赖于生成器生成图像的质量。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-09-09 11:45:02  更:2021-09-09 11:48:15 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 20:03:47-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码