| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 多任务学习MTL-MMOE -> 正文阅读 |
|
[人工智能]多任务学习MTL-MMOE |
一、论文简读1.Motivation多任务模型通过学习不同任务的联系和差异,可提高每个任务的学习效率和质量。多任务学习的的框架广泛采用shared-bottom的结构,不同任务间共用底部的隐层。这种结构本质上可以减少过拟合的风险,但是效果上可能受到任务差异和数据分布带来的影响。也有一些其他结构,比如两个任务的参数不共用,但是通过对不同任务的参数增加L2范数的限制;也有一些对每个任务分别学习一套隐层然后学习所有隐层的组合。和shared-bottom结构相比,这些模型对增加了针对任务的特定参数,在任务差异会影响公共参数的情况下对最终效果有提升。缺点就是模型增加了参数量所以需要更大的数据量来训练模型,而且模型更复杂并不利于在真实生产环境中实际部署使用。 因此,论文中提出了一个Multi-gate Mixture-of-Experts(MMoE)的多任务学习结构。MMoE模型刻画了任务相关性,基于共享表示来学习特定任务的函数,避免了明显增加参数的缺点。 2.模型介绍MMoE模型的结构(下图c)基于广泛使用的Shared-Bottom结构(下图a)和MoE结构,其中图(b)是图?的一种特殊情况,下面依次介绍。 一、Motivation 多任务模型通过学习不同任务的联系和差异,可提高每个任务的学习效率和质量。多任务学习的的框架广泛采用shared-bottom的结构,不同任务间共用底部的隐层。这种结构本质上可以减少过拟合的风险,但是效果上可能受到任务差异和数据分布带来的影响。也有一些其他结构,比如两个任务的参数不共用,但是通过对不同任务的参数增加L2范数的限制;也有一些对每个任务分别学习一套隐层然后学习所有隐层的组合。和shared-bottom结构相比,这些模型对增加了针对任务的特定参数,在任务差异会影响公共参数的情况下对最终效果有提升。缺点就是模型增加了参数量所以需要更大的数据量来训练模型,而且模型更复杂并不利于在真实生产环境中实际部署使用。 因此,论文中提出了一个Multi-gate Mixture-of-Experts(MMoE)的多任务学习结构。MMoE模型刻画了任务相关性,基于共享表示来学习特定任务的函数,避免了明显增加参数的缺点。 二、模型介绍 MMoE模型的结构(下图c)基于广泛使用的Shared-Bottom结构(下图a)和MoE结构,其中图(b)是图?的一种特殊情况,下面依次介绍。 Shared-Bottom Multi-task Model Mixture-of-Experts 后面有些文章将MoE作为一个基本的组成单元,将多个MoE结构堆叠在一个大网络中。比如一个MoE层可以接受上一层MoE层的输出作为输入,其输出作为下一层的输入使用。 所提模型Multi-gate Mixture-of-Experts ? y k = h k ( f k ( x ) ) , y k = ∑ i = 1 n g k ( x ) i f i ( x ) \ y_{k}=h^{k}(f^{k}(x)),y^{k}=\sum_{i=1}^{n}g^{k}(x)_{i}f_{i}(x) ?yk?=hk(fk(x)),yk=∑i=1n?gk(x)i?fi?(x) 其中 ? g k ( x ) = s o f t m a x ( W g k x ) \ g^{k}(x)=softmax(W_{gk}x) ?gk(x)=softmax(Wgk?x),其中KaTeX parse error: Undefined control sequence: \inR at position 10: \ W_{gk} \?i?n?R?gating networks就是一个简单加上softmax layer的线性变换,输入就是input feature,输出是所有experts上的权重。 一方面,因为gating networks通常是轻量级的,而且expert networks是所有任务共用,所以相对于论文中提到的一些baseline方法在计算量和参数量上具有优势。 另一方面,相对于所有任务公共一个门控网络(One-gate MoE model,如上图b),这里MMoE(上图c)中每个任务使用单独的gating networks。每个任务的gating networks通过最终输出权重不同实现对experts的选择性利用。不同任务的gating networks可以学习到不同的组合experts的模式,因此模型考虑到了捕捉到任务的相关性和区别。 References |
|
|
上一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 19:59:50- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |