ITÊýÂë ¹ºÎï ÍøÖ· Í·Ìõ Èí¼þ ÈÕÀú ÔĶÁ ͼÊé¹Ý
TxTС˵ÔĶÁÆ÷
¡ýÓïÒôÔĶÁ,С˵ÏÂÔØ,¹ÅµäÎÄѧ¡ý
ͼƬÅúÁ¿ÏÂÔØÆ÷
¡ýÅúÁ¿ÏÂÔØͼƬ,ÃÀŮͼ¿â¡ý
ͼƬ×Ô¶¯²¥·ÅÆ÷
¡ýͼƬ×Ô¶¯²¥·ÅÆ÷¡ý
Ò»¼üÇå³ýÀ¬»ø
¡ýÇáÇáÒ»µã,Çå³ýϵͳÀ¬»ø¡ý
¿ª·¢: C++֪ʶ¿â Java֪ʶ¿â JavaScript Python PHP֪ʶ¿â È˹¤ÖÇÄÜ Çø¿éÁ´ ´óÊý¾Ý Òƶ¯¿ª·¢ ǶÈëʽ ¿ª·¢¹¤¾ß Êý¾Ý½á¹¹ÓëËã·¨ ¿ª·¢²âÊÔ ÓÎÏ·¿ª·¢ ÍøÂçЭÒé ϵͳÔËά
½Ì³Ì: HTML½Ì³Ì CSS½Ì³Ì JavaScript½Ì³Ì GoÓïÑÔ½Ì³Ì JQuery½Ì³Ì VUE½Ì³Ì VUE3½Ì³Ì Bootstrap½Ì³Ì SQLÊý¾Ý¿â½Ì³Ì CÓïÑÔ½Ì³Ì C++½Ì³Ì Java½Ì³Ì Python½Ì³Ì Python3½Ì³Ì C#½Ì³Ì
ÊýÂë: µçÄÔ ±Ê¼Ç±¾ ÏÔ¿¨ ÏÔʾÆ÷ ¹Ì̬ӲÅÌ Ó²ÅÌ ¶ú»ú ÊÖ»ú iphone vivo oppo СÃ× »ªÎª µ¥·´ ×°»ú ͼÀ­¶¡
 
   -> È˹¤ÖÇÄÜ -> »úÆ÷ѧϰ ÏßÐԻعé -> ÕýÎÄÔĶÁ

[È˹¤ÖÇÄÜ]»úÆ÷ѧϰ ÏßÐԻعé

2.1 ÏßÐԻعé¼ò½é

ѧϰĿ±ê

  • Á˽âÏßÐԻعéµÄÓ¦Óó¡¾°
  • ÖªµÀÏßÐԻعéµÄ¶¨Òå

1 ÏßÐԻعéÓ¦Óó¡¾°

  • ·¿¼ÛÔ¤²â

  • ÏúÊÛ¶îÔ¤²â

  • ´û¿î¶î¶ÈÔ¤²â

ÏßÐÔ¹Øϵ¾ÙÀý:

image-20190220211910033

2 ʲôÊÇÏßÐԻعé

2.1 ¶¨ÒåÓ빫ʽ

ÏßÐԻعé(Linear regression)ÊÇÀûÓûع鷽³Ì(º¯Êý)¶ÔÒ»¸ö»ò¶à¸ö×Ô±äÁ¿(ÌØÕ÷Öµ)ºÍÒò±äÁ¿(Ä¿±êÖµ)Ö®¼ä¹Øϵ½øÐн¨Ä£µÄÒ»ÖÖ·ÖÎö·½Ê½¡£

  • Ìصã:Ö»ÓÐÒ»¸ö×Ô±äÁ¿µÄÇé¿ö³ÆΪµ¥±äÁ¿»Ø¹é,¶àÓÚÒ»¸ö×Ô±äÁ¿Çé¿öµÄ½Ð×ö¶àÔª»Ø¹é¡£

    ͨÓù«Ê½ h ( w ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + . . . + b = w T x + b h(w)=w{_1}x{_1}+w{_2}x{_2}+w{_3}x{_3}+...+b=w^Tx+b h(w)=w1?x1?+w2?x2?+w3?x3?+...+b=wTx+b,

    ÆäÖÐ w w w, x x x¿ÉÒÔÀí½âΪ¾ØÕó: w = ( b w 1 w 2 ? ) w= \begin{pmatrix} b \\ w{_1} \\ w{_2} \\ \vdots \end{pmatrix} w=??????bw1?w2?????????, x = ( 1 x 1 x 2 ? ) x= \begin{pmatrix} 1 \\ x{_1} \\ x{_2}\\\vdots \end{pmatrix} x=??????1x1?x2?????????

  • ÏßÐԻعéÓþØÕó±íʾ¾ÙÀý
    { 1 ¡Á x 1 + x 2 = 2 0 ¡Á x 1 + x 2 = 2 2 ¡Á x 1 + x 2 = 3 \begin{cases}1 \times x{_1} + x{_2} = 2 \\ 0 \times x{_1} + x{_2} = 2 \\ 2 \times x{_1} + x{_2} = 3 \end{cases} ??????1¡Áx1?+x2?=20¡Áx1?+x2?=22¡Áx1?+x2?=3?

? д³É¾ØÕóÐÎʽ:
KaTeX parse error: No such environment: split at position 8: \begin{?s?p?l?i?t?}? &\begin{bmat¡­
? ´ÓÁеĽǶȿ´:
KaTeX parse error: No such environment: split at position 8: \begin{?s?p?l?i?t?}? &\begin{bmatri¡­

?

ÄÇôÔõôÀí½âÄØ?ÎÒÃÇÀ´¿´¼¸¸öÀý×Ó

  • ÆÚÄ©³É¼¨:0.7¡Á¿¼ÊԳɼ¨+0.3¡Áƽʱ³É¼¨
  • ·¿×Ó¼Û¸ñ = 0.02¡ÁÖÐÐÄÇøÓòµÄ¾àÀë + 0.04¡Á³ÇÊÐÒ»Ñõ»¯µªÅ¨¶È + (-0.12¡Á×Ôס·¿Æ½¾ù·¿¼Û) + 0.254¡Á³ÇÕò·¸×ïÂÊ

ÉÏÃæÁ½¸öÀý×Ó,ÎÒÃÇ¿´µ½ÌØÕ÷ÖµÓëÄ¿±êÖµÖ®¼ä½¨Á¢ÁËÒ»¸ö¹Øϵ,Õâ¸ö¹Øϵ¿ÉÒÔÀí½âΪÏßÐÔÄ£ÐÍ¡£

2.2 ÏßÐԻعéµÄÌØÕ÷ÓëÄ¿±êµÄ¹Øϵ·ÖÎö

ÏßÐԻع鵱ÖÐÖ÷ÒªÓÐÁ½ÖÖÄ£ÐÍ,**Ò»ÖÖÊÇÏßÐÔ¹Øϵ,ÁíÒ»ÖÖÊÇ·ÇÏßÐÔ¹Øϵ¡£**ÔÚÕâÀïÎÒÃÇÖ»ÄÜ»­Ò»¸öƽÃæ¸üºÃÈ¥Àí½â,ËùÒÔ¶¼Óõ¥¸öÌØÕ÷»òÁ½¸öÌØÕ÷¾ÙÀý×Ó¡£

  • ÏßÐÔ¹Øϵ

    • µ¥±äÁ¿ÏßÐÔ¹Øϵ:

    ?o??€¡ì?
3?3"???

    • ¶à±äÁ¿ÏßÐÔ¹Øϵ

      image-20210705120758312

      ×¢ÊÍ:µ¥ÌØÕ÷ÓëÄ¿±êÖµµÄ¹Øϵ³ÊÖ±Ïß¹Øϵ,»òÕßÁ½¸öÌØÕ÷ÓëÄ¿±êÖµ³ÊÏÖƽÃæµÄ¹Øϵ

¸ü¸ßά¶ÈµÄÎÒÃDz»ÓÃ×Ô¼ºÈ¥Ïë,¼ÇסÕâÖÖ¹Øϵ¼´¿É

  • ·ÇÏßÐÔ¹Øϵ

    ¨¦???o??€¡ì?
3?3"

×¢ÊÍ:Ϊʲô»áÕâÑùµÄ¹ØϵÄØ?Ô­ÒòÊÇʲô?

Èç¹ûÊÇ·ÇÏßÐÔ¹Øϵ,ÄÇô»Ø¹é·½³Ì¿ÉÒÔÀí½âΪ:

w 1 x 1 + w 2 x 2 2 + w 3 x 3 2 w_1x_1+w_2x_2^2+w_3x_3^2 w1?x1?+w2?x22?+w3?x32?

С½á

  • ÏßÐԻعéµÄ¶¨Ò塾Á˽⡿
    • ÀûÓûع鷽³Ì(º¯Êý)¶ÔÒ»¸ö»ò¶à¸ö×Ô±äÁ¿(ÌØÕ÷Öµ)ºÍÒò±äÁ¿(Ä¿±êÖµ)Ö®¼ä¹Øϵ½øÐн¨Ä£µÄÒ»ÖÖ·ÖÎö·½Ê½
  • ÏßÐԻعéµÄ·ÖÀࡾ֪µÀ¡¿
    • ÏßÐÔ¹Øϵ
    • ·ÇÏßÐÔ¹Øϵ

2.2 ÏßÐԻعéapi³õ²½Ê¹ÓÃ

ѧϰĿ±ê

  • ÖªµÀÏßÐԻعéapiµÄ¼òµ¥Ê¹ÓÃ

1 ÏßÐԻعéAPI

  • sklearn.linear_model.LinearRegression()
    • LinearRegression.coef_:»Ø¹éϵÊý
    • LinearRegression.intercept_: ½Ø¾à

2 ¾ÙÀý

image-20190320204457160

2.1 ²½Öè·ÖÎö

  • 1.»ñÈ¡Êý¾Ý¼¯
  • 2.Êý¾Ý»ù±¾´¦Àí(¸Ã°¸ÀýÖÐÊ¡ÂÔ)
  • 3.ÌØÕ÷¹¤³Ì(¸Ã°¸ÀýÖÐÊ¡ÂÔ)
  • 4.»úÆ÷ѧϰ
  • 5.Ä£ÐÍÆÀ¹À(¸Ã°¸ÀýÖÐÊ¡ÂÔ)

2.2 ´úÂë¹ý³Ì

  • µ¼ÈëÄ£¿é
from sklearn.linear_model import LinearRegression
  • ¹¹ÔìÊý¾Ý¼¯
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
  • »úÆ÷ѧϰ-- Ä£ÐÍѵÁ·
# ʵÀý»¯API
estimator = LinearRegression()

# ʹÓÃfit·½·¨½øÐÐѵÁ·,µÃµ½Ä£ÐÍ
estimator.fit(x,y)

# ´òÓ¡»Ø¹éϵÊý(ÿ¸öÌØÕ÷ÁÐÇ°µÄϵÊý)
estimator.coef_

# ´òÓ¡½Ø¾à
estimator.intercept_

# ÀûÓÃѵÁ·µÄÄ£ÐͽøÐÐÔ¤²â
estimator.predict([[100, 80]])

С½á

  • sklearn.linear_model.LinearRegression()
    • LinearRegression.coef_:»Ø¹éϵÊý
    • LinearRegression.intercept_: ½Ø¾à

2.3 Êýѧ:Çóµ¼

ѧϰĿ±ê

  • ÖªµÀ³£¼ûµÄÇóµ¼·½·¨
  • ÖªµÀµ¼ÊýµÄËÄÔòÔËËã

1 µ¼ÊýµÄ¸ÅÄî»Ø¹Ë

  • µ¼Êý(Derivative),Ò²½Ðµ¼º¯ÊýÖµ¡£ÓÖÃû΢ÉÌ,ÊÇ΢»ý·ÖÖеÄÖØÒª»ù´¡¸ÅÄî¡£

    • µ±º¯Êýy=f(x)µÄ×Ô±äÁ¿xÔÚÒ»µãx0ÉϲúÉúÒ»¸öÔöÁ¿¦¤xʱ,º¯ÊýÊä³öÖµµÄÔöÁ¿¦¤yÓë×Ô±äÁ¿ÔöÁ¿¦¤xµÄ±ÈÖµÔÚ¦¤xÇ÷ÓÚ0ʱµÄ¼«ÏÞaÈç¹û´æÔÚ,a¼´ÎªÔÚx0´¦µÄµ¼Êý,¼Ç×÷f¡¯(x0)»òdf(x0)/dx¡£

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-9LNIMY0r-1631190399726)(./images/µ¼Êý.jpeg)]

  • µ¼ÊýÊǺ¯ÊýµÄ¾Ö²¿ÐÔÖÊ¡£Ò»¸öº¯ÊýÔÚijһµãµÄµ¼ÊýÃèÊöÁËÕâ¸öº¯ÊýÔÚÕâÒ»µã¸½½üµÄ±ä»¯ÂÊ¡£

    • Èç¹ûº¯ÊýµÄ×Ô±äÁ¿ºÍÈ¡Öµ¶¼ÊÇʵÊýµÄ»°,º¯ÊýÔÚijһµãµÄµ¼Êý¾ÍÊǸú¯ÊýËù´ú±íµÄÇúÏßÔÚÕâÒ»µãÉϵÄÇÐÏßбÂÊ
    • µ¼ÊýµÄ±¾ÖÊÊÇͨ¹ý¼«Ï޵ĸÅÄî¶Ôº¯Êý½øÐоֲ¿µÄÏßÐԱƽü¡£ÀýÈçÔÚÔ˶¯Ñ§ÖÐ,ÎïÌåµÄλÒƶÔÓÚʱ¼äµÄµ¼Êý¾ÍÊÇÎïÌåµÄ˲ʱËÙ¶È
  • ²»ÊÇËùÓеĺ¯Êý¶¼Óе¼Êý,Ò»¸öº¯ÊýÒ²²»Ò»¶¨ÔÚËùÓеĵãÉ϶¼Óе¼Êý¡£

    • Èôijº¯ÊýÔÚijһµãµ¼Êý´æÔÚ,Ôò³ÆÆäÔÚÕâÒ»µã¿Éµ¼,·ñÔò³ÆΪ²»¿Éµ¼
    • ¿Éµ¼µÄº¯ÊýÒ»¶¨Á¬Ðø;²»Á¬ÐøµÄº¯ÊýÒ»¶¨²»¿Éµ¼
  • ¶ÔÓڿɵ¼µÄº¯Êýf(x),x?f¡¯(x)Ò²ÊÇÒ»¸öº¯Êý,³Æ×÷f(x)µÄµ¼º¯Êý(¼ò³Æµ¼Êý)¡£Ñ°ÕÒÒÑÖªµÄº¯ÊýÔÚijµãµÄµ¼Êý»òÆäµ¼º¯ÊýµÄ¹ý³Ì³ÆΪÇóµ¼

    • ʵÖÊÉÏ,Çóµ¼¾ÍÊÇÒ»¸öÇó¼«Ï޵Ĺý³Ì,µ¼ÊýµÄËÄÔòÔËËã·¨ÔòÒ²À´Ô´ÓÚ¼«ÏÞµÄËÄÔòÔËËã·¨Ôò
    • ÒÑÖªµ¼º¯ÊýÒ²¿ÉÒÔµ¹¹ýÀ´ÇóÔ­À´µÄº¯Êý

2 ³£¼ûº¯ÊýµÄµ¼Êý

¹«Ê½Àý×Ó
( C ) ¡ä = 0 (C)^\prime=0 (C)¡ä=0 ( 5 ) ¡ä = 0 \left(5\right)^\prime=0 (5)¡ä=0 ( 10 ) ¡ä = 0 \left(10\right)^\prime=0 (10)¡ä=0
( x ¦Á ) ¡ä = ¦Á x ¦Á ? 1 \left(x^\alpha\right)^\prime=\alpha x^{\alpha-1} (x¦Á)¡ä=¦Áx¦Á?1 ( x 3 ) ¡ä = 3 x 2 \left(x^3\right)^\prime=3 x^{2} (x3)¡ä=3x2 ( x 5 ) ¡ä = 5 x 4 \left(x^5\right)^\prime=5 x^{4} (x5)¡ä=5x4
( a x ) ¡ä = a x ln ? a \left(a^x\right)^\prime=a^{x}\ln{a} (ax)¡ä=axlna ( 2 x ) ¡ä = 2 x ln ? 2 \left(2^x\right)^\prime=2^x\ln{2} (2x)¡ä=2xln2 ( 7 x ) ¡ä = 7 x ln ? 7 \left(7^x\right)^\prime=7^x\ln{7} (7x)¡ä=7xln7
( e x ) ¡ä = e x \left(e^x\right)^\prime=e^{x} (ex)¡ä=ex ( e x ) ¡ä = e x \left(e^x\right)^\prime=e^{x} (ex)¡ä=ex
( log ? a x ) ¡ä = 1 x ln ? a \left(\log{_a}x\right)^\prime=\frac{1}{x\ln{a}} (loga?x)¡ä=xlna1? ( log ? 10 x ) ¡ä = 1 x ln ? 10 \left(\log{_{10}}x\right)^\prime=\frac{1}{x\ln{10}} (log10?x)¡ä=xln101? ( log ? 6 x ) ¡ä = 1 x ln ? 6 \left(\log{_{6}}x\right)^\prime=\frac{1}{x\ln{6}} (log6?x)¡ä=xln61?
( ln ? x ) ¡ä = 1 x \left(\ln{x}\right)^\prime=\frac{1}{x} (lnx)¡ä=x1? ( ln ? x ) ¡ä = 1 x \left(\ln{x}\right)^\prime=\frac{1}{x} (lnx)¡ä=x1?
( sin ? x ) ¡ä = cos ? x \left(\sin{x}\right)^\prime=\cos{x} (sinx)¡ä=cosx ( sin ? x ) ¡ä = cos ? x \left(\sin{x}\right)^\prime=\cos{x} (sinx)¡ä=cosx
( cos ? x ) ¡ä = ? sin ? x \left(\cos{x}\right)^\prime=-\sin{x} (cosx)¡ä=?sinx ( cos ? x ) ¡ä = ? sin ? x \left(\cos{x}\right)^\prime=-\sin{x} (cosx)¡ä=?sinx

3 µ¼ÊýµÄËÄÔòÔËËã

¹«Ê½Àý×Ó
[ u ( x ) ¡À v ( x ) ] ¡ä = u ¡ä ( x ) ¡À v ¡ä ( x ) \left[u(x)\pm v(x)\right]^\prime=u^\prime(x) \pm v^\prime(x) [u(x)¡Àv(x)]¡ä=u¡ä(x)¡Àv¡ä(x) ( e x + 4 ln ? x ) ¡ä = ( e x ) ¡ä + ( 4 ln ? x ) ¡ä = e x + 4 x (e^x+4\ln{x})^\prime=(e^x)^\prime+(4\ln{x})^\prime=e^x+\frac{4}{x} (ex+4lnx)¡ä=(ex)¡ä+(4lnx)¡ä=ex+x4?
[ u ( x ) ? v ( x ) ] ¡ä = u ¡ä ( x ) ? v ( x ) + u ( x ) ? v ¡ä ( x ) \left[u(x)\cdot v(x)\right]^\prime=u^\prime(x) \cdot v(x) + u(x) \cdot v^\prime(x) [u(x)?v(x)]¡ä=u¡ä(x)?v(x)+u(x)?v¡ä(x) ( sin ? x ? ln ? x ) ¡ä = cos ? x ? ln ? x + sin ? x ? 1 x (\sin{x}\cdot\ln{x})^\prime=\cos{x}\cdot\ln{x}+\sin{x}\cdot\frac{1}{x} (sinx?lnx)¡ä=cosx?lnx+sinx?x1?
[ u ( x ) v ( x ) ] ¡ä = u ¡ä ( x ) ? v ( x ) ? u ( x ) ? v ¡ä ( x ) v 2 ( x ) \left[\frac{u(x)}{v(x)}\right]^\prime=\frac{u^\prime(x) \cdot v(x) - u(x) \cdot v^\prime(x)}{v^2(x)} [v(x)u(x)?]¡ä=v2(x)u¡ä(x)?v(x)?u(x)?v¡ä(x)? ( e x cos ? x ) ¡ä = e x ? cos ? x ? e x ? ( ? sin ? x ) c o s 2 ( x ) \left(\frac{e^x}{\cos{x}}\right)^\prime=\frac{e^x\cdot\cos{x}-e^x\cdot(-\sin{x})}{cos^2(x)} (cosxex?)¡ä=cos2(x)ex?cosx?ex?(?sinx)?
{ g [ h ( x ) ] } ¡ä = g ¡ä ( h ) ? h ¡ä ( x ) \{g[h(x)]\}^\prime=g^\prime(h)*h^\prime(x) {g[h(x)]}¡ä=g¡ä(h)?h¡ä(x) ( sin ? 2 x ) ¡ä = cos ? 2 x ? ( 2 x ) ¡ä = 2 cos ? ( 2 x ) (\sin{2x})^\prime=\cos{2x}\cdot(2x)^\prime=2\cos(2x) (sin2x)¡ä=cos2x?(2x)¡ä=2cos(2x)

4 Á·Ï°

  1. y = x 3 ? 2 x 2 + s i n x y = x^3-2x^2+sinx y=x3?2x2+sinx,Çó f ¡ä ( x ) f^\prime(x) f¡ä(x)
  2. ( e x + 4 l n x ) ¡ä (e^x+4lnx)^\prime (ex+4lnx)¡ä
  3. ( s i n x ? l n x ) ¡ä (sinx*lnx)^\prime (sinx?lnx)¡ä
  4. ( e x c o s x ) ¡ä (\frac{e^x}{cosx})^\prime (cosxex?)¡ä
  5. y = sin ? 2 x y=\sin2x y=sin2x, Çó d y d x \frac{dy}{dx} dxdy?
  6. ( e 2 x ) ¡ä (e^{2x})^\prime (e2x)¡ä

´ð°¸:

  1. y ¡ä = ( x 3 ? 2 x 2 + sin ? x ) ¡ä = ( x 3 ) ¡ä ? ( 2 x 2 ) ¡ä + ( sin ? x ) ¡ä = 3 x 2 ? 4 x + cos ? x y^\prime=(x^3-2x^2+\sin{x})^\prime=(x^3)^\prime-(2x^2)^\prime+(\sin{x})^\prime = 3x^2-4x+\cos{x} y¡ä=(x3?2x2+sinx)¡ä=(x3)¡ä?(2x2)¡ä+(sinx)¡ä=3x2?4x+cosx
  2. ( e x + 4 l n x ) ¡ä = ( e x ) ¡ä + ( 4 ln ? x ) ¡ä = e x + 4 x (e^x+4lnx)^\prime=(e^x)^\prime+(4\ln{x})^\prime=e^x+\frac{4}{x} (ex+4lnx)¡ä=(ex)¡ä+(4lnx)¡ä=ex+x4?
  3. ( s i n x ? l n x ) ¡ä = ( sin ? x ) ¡ä ? ln ? x + sin ? x ? ( ln ? x ) ¡ä = cos ? x ? ln ? x + sin ? x ? 1 x (sinx*lnx)^\prime=(\sin{x})^\prime\cdot\ln{x}+\sin{x}\cdot(\ln{x})^\prime=\cos{x}\cdot\ln{x}+\sin{x}\cdot\frac{1}{x} (sinx?lnx)¡ä=(sinx)¡ä?lnx+sinx?(lnx)¡ä=cosx?lnx+sinx?x1?
  4. ( e x cos ? x ) ¡ä = ( e x ) ¡ä ? cos ? x ? e x ? ( cos ? x ) ¡ä cos ? 2 x = e x ? cos ? x ? e x ? ( ? sin ? x ) cos ? 2 ( x ) \left(\frac{e^x}{\cos{x}}\right)^\prime=\frac{(e^x)^\prime\cdot\cos{x}-e^x\cdot(\cos{x})\prime}{\cos^2{x}}=\frac{e^x\cdot\cos{x}-e^x\cdot(-\sin{x})}{\cos^2(x)} (cosxex?)¡ä=cos2x(ex)¡ä?cosx?ex?(cosx)¡ä?=cos2(x)ex?cosx?ex?(?sinx)?
  5. ( sin ? 2 x ) ¡ä = cos ? 2 x ? ( 2 x ) ¡ä = 2 cos ? ( 2 x ) (\sin{2x})^\prime=\cos{2x}\cdot(2x)^\prime=2\cos(2x) (sin2x)¡ä=cos2x?(2x)¡ä=2cos(2x)
  6. ( e 2 x ) ¡ä = e 2 x ? ( 2 x ) ¡ä = 2 e 2 x (e^{2x})^\prime=e^{2x}\cdot(2x)^\prime=2e^{2x} (e2x)¡ä=e2x?(2x)¡ä=2e2x

С½á

  • ³£¼ûº¯ÊýµÄÇóµ¼·½Ê½ºÍµ¼ÊýµÄËÄÔòÔËËã

2.4 ÏßÐԻعéµÄËðʧºÍÓÅ»¯

ѧϰĿ±ê

  • ÖªµÀÏßÐԻعéÖÐËðʧº¯Êý
  • ÖªµÀʹÓÃÕý¹æ·½³Ì¶ÔËðʧº¯ÊýÓÅ»¯µÄ¹ý³Ì
  • ÖªµÀʹÓÃÌݶÈϽµ·¨¶ÔËðʧº¯ÊýÓÅ»¯µÄ¹ý³Ì

ÈçºÎÈ·¶¨»Ø¹é·½³Ì

  • Ë㷨ѵÁ·³öÀ´µÄ»Ø¹é·½³Ì, ÊÇ·ñ»áÂú×ãËùÓеÄÑù±¾?
    • ÔÊÐíÎó²î´æÔÚ
    • Ä¿±ê,»Ø¹é·½³ÌµÄ½á¹ûÓëʵ¼ÊÖµµÄÎó²î×îС
image-20190221093806586
  • ¼ÈÈ»´æÔÚÎó²î,ÈçºÎºâÁ¿Îó²î?

1 Ëðʧº¯Êý

×ÜËðʧ¶¨ÒåΪ:
J ( w ) = ( h ( x 1 ) ? y 1 ) 2 + ( h ( x 2 ) ? y 2 ) 2 + . . . + ( h ( x m ) ? y m ) 2 = ¡Æ i = 1 m ( h ( x i ) ? y i ) 2 \begin{aligned}J(w)&=(h(x_{1})-y_{1})^2+(h(x_{2})-y_{2})^2+...+(h(x_{m})-y_{m})^2 \\ &=\sum_{i=1}^m(h(x_{i})-y_{i})^2\end{aligned} J(w)?=(h(x1?)?y1?)2+(h(x2?)?y2?)2+...+(h(xm?)?ym?)2=i=1¡Æm?(h(xi?)?yi?)2?

  • y i y_{i} yi?ΪµÚ i i i¸öѵÁ·Ñù±¾µÄÕæʵֵ
  • h ( x i ) h(x_{i}) h(xi?)ΪµÚ i i i¸öѵÁ·Ñù±¾ÌØÕ÷Öµ×éºÏÔ¤²âº¯Êý,Ò²³ÆΪĿ±êº¯Êý
    • Ä¿±êº¯Êý(objective function)ÊÇÖ¸Ëù¹ØÐĵÄÄ¿±ê(ijһ±äÁ¿)ÓëÏà¹ØµÄÒòËØ(ijЩ±äÁ¿)µÄº¯Êý¹Øϵ¡£¼òµ¥µÄ˵,¾ÍÊÇÄãÇó½âºóËùµÃ³öµÄÄǸöº¯Êý¡£
  • ÓÖ³Æ×îС¶þ³Ë·¨

ÈçºÎÈ¥¼õÉÙÕâ¸öËðʧ,ʹÎÒÃÇÔ¤²âµÄ¸ü¼Ó׼ȷЩ?¼ÈÈ»´æÔÚÁËÕâ¸öËðʧ,ÎÒÃÇһֱ˵»úÆ÷ѧϰÓÐ×Ô¶¯Ñ§Ï°µÄ¹¦ÄÜ,ÔÚÏßÐԻعéÕâÀï¸üÊÇÄܹ»ÌåÏÖ¡£ÕâÀï¿ÉÒÔͨ¹ýһЩÓÅ»¯·½·¨È¥ÓÅ»¯(ÆäʵÊÇÊýѧµ±ÖеÄÇóµ¼¹¦ÄÜ)»Ø¹éµÄ×ÜËðʧ!!!

2 ÓÅ»¯Ëã·¨

ÈçºÎÈ¥ÇóÄ£Ð͵±ÖеÄW,ʹµÃËðʧ×îС?(Ä¿µÄÊÇÕÒµ½×îСËðʧ¶ÔÓ¦µÄWÖµ)

  • ÏßÐԻع龭³£Ê¹ÓõÄÁ½ÖÖÓÅ»¯Ëã·¨
    • Õý¹æ·½³Ì
    • ÌݶÈϽµ·¨

2.1 Õý¹æ·½³Ì

2.1.1 ʲôÊÇÕý¹æ·½³Ì

w = ( X T X ) ? 1 X T y w=(X^TX)^{-1}X^Ty w=(XTX)?1XTy

Àí½â:XΪÌØÕ÷Öµ¾ØÕó,yΪĿ±êÖµ¾ØÕó¡£Ö±½ÓÇóµ½×îºÃµÄ½á¹û

ȱµã:µ±ÌØÕ÷¹ý¶à¹ý¸´ÔÓʱ,Çó½âËÙ¶ÈÌ«Âý²¢Çҵò»µ½½á¹û

image-20190221094805620

2.1.2 Õý¹æ·½³ÌÇó½â¾ÙÀý

ÒÔϱíʾÊý¾ÝΪÀý:

image-20190221100240178

¼´:

image-20190221100305355

ÔËÓÃÕý¹æ·½³Ì·½·¨Çó½â²ÎÊý:

image-20190709103604510

2.2 ÌݶÈϽµ(Gradient Descent)

2.2.1 ʲôÊÇÌݶÈϽµ

ÌݶÈϽµ·¨µÄ»ù±¾Ë¼Ïë¿ÉÒÔÀà±ÈΪһ¸öÏÂɽµÄ¹ý³Ì¡£

¼ÙÉèÕâÑùÒ»¸ö³¡¾°:

Ò»¸öÈ˱»À§ÔÚɽÉÏ,ÐèÒª´ÓɽÉÏÏÂÀ´(i.e. ÕÒµ½É½µÄ×îµÍµã,Ò²¾ÍÊÇɽ¹È)¡£µ«´ËʱɽÉϵÄŨÎíºÜ´ó,µ¼Ö¿ÉÊӶȺܵ͡£

Òò´Ë,ÏÂɽµÄ·¾¶¾ÍÎÞ·¨È·¶¨,Ëû±ØÐëÀûÓÃ×Ô¼ºÖÜΧµÄÐÅϢȥÕÒµ½ÏÂɽµÄ·¾¶¡£Õâ¸öʱºò,Ëû¾Í¿ÉÒÔÀûÓÃÌݶÈϽµËã·¨À´°ïÖú×Ô¼ºÏÂɽ¡£

¾ßÌåÀ´Ëµ¾ÍÊÇ,ÒÔËûµ±Ç°µÄËù´¦µÄλÖÃΪ»ù×¼,Ñ°ÕÒÕâ¸öλÖÃ×Ç͵ĵط½,È»ºó³¯×ÅɽµÄ¸ß¶ÈϽµµÄµØ·½×ß,(ͬÀí,Èç¹ûÎÒÃǵÄÄ¿±êÊÇÉÏɽ,Ò²¾ÍÊÇÅÀµ½É½¶¥,ÄÇô´ËʱӦ¸ÃÊdz¯×Å×Ç͵ķ½ÏòÍùÉÏ×ß)¡£È»ºóÿ×ßÒ»¶Î¾àÀë,¶¼·´¸´²ÉÓÃͬһ¸ö·½·¨,×îºó¾ÍÄܳɹ¦µÄµÖ´ïɽ¹È¡£

image-20190221112607972

ÌݶÈϽµµÄ»ù±¾¹ý³Ì¾ÍºÍÏÂɽµÄ³¡¾°ºÜÀàËÆ¡£

Ê×ÏÈ,ÎÒÃÇÓÐÒ»¸ö¿É΢·ÖµÄº¯Êý¡£Õâ¸öº¯Êý¾Í´ú±í×ÅÒ»×ùɽ¡£

ÎÒÃǵÄÄ¿±ê¾ÍÊÇÕÒµ½Õâ¸öº¯ÊýµÄ×îСֵ,Ò²¾ÍÊÇɽµ×¡£

¸ù¾Ý֮ǰµÄ³¡¾°¼ÙÉè,×î¿ìµÄÏÂɽµÄ·½Ê½¾ÍÊÇÕÒµ½µ±Ç°Î»ÖÃ×Ç͵ķ½Ïò,È»ºóÑØ×Å´Ë·½ÏòÏòÏÂ×ß,¶ÔÓ¦µ½º¯ÊýÖÐ,¾ÍÊÇÕÒµ½¸ø¶¨µãµÄÌÝ¶È ,È»ºó³¯×ÅÌݶÈÏà·´µÄ·½Ïò,¾ÍÄÜÈú¯ÊýֵϽµµÄ×î¿ì!ÒòΪÌݶȵķ½Ïò¾ÍÊǺ¯ÊýÖµ±ä»¯×î¿ìµÄ·½Ïò¡£
ËùÒÔ,ÎÒÃÇÖظ´ÀûÓÃÕâ¸ö·½·¨,·´¸´ÇóÈ¡ÌݶÈ,×îºó¾ÍÄܵ½´ï¾Ö²¿µÄ×îСֵ,Õâ¾ÍÀàËÆÓÚÎÒÃÇÏÂɽµÄ¹ý³Ì¡£¶øÇóÈ¡ÌݶȾÍÈ·¶¨ÁË×Ç͵ķ½Ïò,Ò²¾ÍÊdz¡¾°ÖвâÁ¿·½ÏòµÄÊֶΡ£

2.2.2 ÌݶȵĸÅÄî

ÌݶÈÊÇ΢»ý·ÖÖÐÒ»¸öºÜÖØÒªµÄ¸ÅÄî

  • ÔÚµ¥±äÁ¿µÄº¯ÊýÖÐ,ÌݶÈÆäʵ¾ÍÊǺ¯ÊýµÄ΢·Ö,´ú±íן¯ÊýÔÚij¸ö¸ø¶¨µãµÄÇÐÏßµÄбÂÊ;
  • ÔÚ¶à±äÁ¿º¯ÊýÖÐ,ÌݶÈÊÇÒ»¸öÏòÁ¿,ÏòÁ¿Óз½Ïò,Ìݶȵķ½Ïò¾ÍÖ¸³öÁ˺¯ÊýÔÚ¸ø¶¨µãµÄÉÏÉý×î¿ìµÄ·½Ïò;
    • ÔÚ΢»ý·ÖÀïÃæ,¶Ô¶àÔªº¯ÊýµÄ²ÎÊýÇó?Æ«µ¼Êý,°ÑÇóµÃµÄ¸÷¸ö²ÎÊýµÄÆ«µ¼ÊýÒÔÏòÁ¿µÄÐÎʽд³öÀ´,¾ÍÊÇÌݶȡ£

ÕâÒ²¾Í˵Ã÷ÁËΪʲôÎÒÃÇÐèҪǧ·½°Ù¼ÆµÄÇóÈ¡ÌݶÈ!ÎÒÃÇÐèÒªµ½´ïɽµ×,¾ÍÐèÒªÔÚÿһ²½¹Û²âµ½´Ëʱ×Ç͵ĵط½,ÌݶȾÍÇ¡ÇɸæËßÁËÎÒÃÇÕâ¸ö·½Ïò¡£Ìݶȵķ½ÏòÊǺ¯ÊýÔÚ¸ø¶¨µãÉÏÉý×î¿ìµÄ·½Ïò,ÄÇôÌݶȵķ´·½Ïò¾ÍÊǺ¯ÊýÔÚ¸ø¶¨µãϽµ×î¿ìµÄ·½Ïò,ÕâÕýÊÇÎÒÃÇËùÐèÒªµÄ¡£ËùÒÔÎÒÃÇÖ»ÒªÑØ×ÅÌݶȵķ´·½ÏòÒ»Ö±×ß,¾ÍÄÜ×ßµ½¾Ö²¿µÄ×îµÍµã!

2.2.3 ÌݶÈϽµ¾ÙÀý

  • 1. µ¥±äÁ¿º¯ÊýµÄÌݶÈϽµ

ÎÒÃǼÙÉèÓÐÒ»¸öµ¥±äÁ¿µÄº¯Êý : J ( ¦È ) = ¦È 2 J(\theta) = \theta^2 J(¦È)=¦È2

º¯ÊýµÄ΢·Ö: J ¡ä ( ¦È ) = 2 ¦È J^\prime(\theta) = 2\theta J¡ä(¦È)=2¦È

³õʼ»¯,ÆðµãΪ(ÒÑÖªµÄÆðʼλÖÃ): ¦È 0 = 1 \theta^0 = 1 ¦È0=1

ѧϰÂÊ(²½³¤): ¦Á = 0.4 \alpha = 0.4 ¦Á=0.4

ÎÒÃÇ¿ªÊ¼½øÐÐÌݶÈϽµµÄµü´ú¼ÆËã¹ý³Ì:
KaTeX parse error: No such environment: eqnarray at position 15: \large \begin{?e?q?n?a?r?r?a?y?}? \theta^0 &=& 1¡­

Èçͼ,¾­¹ýËĴεÄÔËËã,Ò²¾ÍÊÇ×ßÁËËIJ½,»ù±¾¾ÍµÖ´ïÁ˺¯ÊýµÄ×îµÍµã,Ò²¾ÍÊÇɽµ×

image-20190221102725918
  • 2.¶à±äÁ¿º¯ÊýµÄÌݶÈϽµ

ÎÒÃǼÙÉèÓÐÒ»¸öÄ¿±êº¯Êý : J ( ¦È ) = ¦È 1 2 + ¦È 2 2 J(\theta) = \theta_{1}^{2} + \theta_{2}^{2} J(¦È)=¦È12?+¦È22?

ÏÖÔÚҪͨ¹ýÌݶÈϽµ·¨¼ÆËãÕâ¸öº¯ÊýµÄ×îСֵ¡£ÎÒÃÇͨ¹ý¹Û²ì¾ÍÄÜ·¢ÏÖ×îСֵÆäʵ¾ÍÊÇ (0,0)µã¡£µ«ÊǽÓÏÂ
À´,ÎÒÃÇ»á´ÓÌݶÈϽµËã·¨¿ªÊ¼Ò»²½²½¼ÆËãµ½Õâ¸ö×îСֵ!
ÎÒÃǼÙÉè³õʼµÄÆðµãΪ: ¦È 0 = ( 1 , 3 ) \theta^{0} = (1, 3) ¦È0=(1,3)

³õʼµÄѧϰÂÊ(²½³¤): ¦Á = 0.1 \alpha = 0.1 ¦Á=0.1

º¯ÊýµÄÌݶÈΪ: ¦¤ J ( ¦È ) = < 2 ¦È 1 , 2 ¦È 2 > \Delta J(\theta) =< 2\theta_{1} ,2\theta_{2}> ¦¤J(¦È)=<2¦È1?,2¦È2?>

½øÐжà´Îµü´ú:
$$
\begin{eqnarray}
\Theta^0 &=& (1, 3) \
\Theta^1 &=& \Theta^0-\alpha\Delta J(\Theta)\
&=&(1,3)-0.1(2,6)\
&=&(0.8, 2.4)\
\Theta^2 &=& (0.8, 2.4)-0.1(1.6, 4.8)\
&=&(0.64, 1.92)\
\Theta^3 &=& (0.512, 1.536)\
\Theta^4 &=& (0.4096, 1.2288)\
\vdots\
\Theta^{10} &=& (0.10737418240000003, 0.32212254720000005)\
\vdots\
\Theta^{50} &=& (1.1417981541647683e^{-5}, 3.425394462494306e^{-5})\
\vdots\
\Theta^{100} &=& (1.6296287810675902e^{-10}, 4.888886343202771e^{-10})\

\end{eqnarray}
$$

ÎÒÃÇ·¢ÏÖ,ÒѾ­»ù±¾¿¿½üº¯ÊýµÄ×îСֵµã

image-20190221103220033

2.2.4 ÌݶÈϽµ**(**Gradient Descent)¹«Ê½

¦È i + 1 = ¦È i ? ¦Á ? ? ¦È i J ( ¦È ) \Large \theta_{i+1} = \theta_{i} - \alpha\frac{\partial}{\partial\theta_{i}}J(\theta) ¦Èi+1?=¦Èi??¦Á?¦Èi???J(¦È)

  • 1) ¦Á \alpha ¦ÁÊÇʲôº¬Òå?

¦Á \alpha ¦ÁÔÚÌݶÈϽµËã·¨Öб»³Æ×÷ΪѧϰÂÊ»òÕß²½³¤,Òâζ×ÅÎÒÃÇ¿ÉÒÔͨ¹ý¦ÁÀ´¿ØÖÆÿһ²½×ߵľàÀë,¿ØÖƲÎÊý²»Òª×ßÌ«¿ì,´í¹ýÁËʹËðʧº¯ÊýÈ¡×îСֵµÄµã¡£Í¬Ê±Ò²Òª±£Ö¤²»Òª×ßµÄÌ«Âý,µ¼ÖÂÌ«ÑôÏÂɽÁË,»¹Ã»ÓÐ×ßµ½É½Ï¡£ËùÒÔ¦ÁµÄÑ¡ÔñÔÚÌݶÈϽµ·¨ÖÐÍùÍùÊǺÜÖØÒªµÄ!¦Á²»ÄÜÌ«´óÒ²²»ÄÜ̫С,̫СµÄ»°,¿ÉÄܵ¼Ö³ٳÙ×ß²»µ½×îµÍµã,Ì«´óµÄ»°,»áµ¼Ö´í¹ý×îµÍµã!

image-20190221113408141
  • 2) ΪʲôÌݶÈÒª³ËÒÔÒ»¸ö¸ººÅ

ÌݶÈÇ°¼ÓÒ»¸ö¸ººÅ,¾ÍÒâζ×ų¯×ÅÌݶÈÏà·´µÄ·½ÏòÇ°½ø!ÎÒÃÇÔÚÇ°ÎÄÌáµ½,Ìݶȵķ½Ïòʵ¼Ê¾ÍÊǺ¯ÊýÔڴ˵ãÉÏÉý×î¿ìµÄ·½Ïò!¶øÎÒÃÇÐèÒª³¯×ÅϽµ×î¿ìµÄ·½Ïò×ß,×ÔÈ»¾ÍÊǸºµÄÌݶȵķ½Ïò,ËùÒÔ´Ë´¦ÐèÒª¼ÓÉϸººÅ

ÎÒÃÇͨ¹ýÁ½¸öͼ¸üºÃÀí½âÌݶÈϽµµÄ¹ý³Ì

??????¨¦??????¡é¡¥?o|???¨¦?? ?¡è????¨¦??????¡é¡¥?o|???¨¦??

ËùÒÔÓÐÁËÌݶÈϽµÕâÑùÒ»¸öÓÅ»¯Ëã·¨,»Ø¹é¾ÍÓÐÁË"×Ô¶¯Ñ§Ï°"µÄÄÜÁ¦

  • ÓÅ»¯¶¯Ì¬Í¼ÑÝʾ
image-20190220211910033

3 ÌݶÈϽµºÍÕý¹æ·½³ÌµÄ¶Ô±È

3.1 Á½ÖÖ·½·¨¶Ô±È

ÌݶÈϽµÕý¹æ·½³Ì
ÐèҪѡÔñѧϰÂʲ»ÐèÒª
ÐèÒªµü´úÇó½âÒ»´ÎÔËËãµÃ³ö
ÌØÕ÷ÊýÁ¿½Ï´ó(³¬¹ý10000¸ö)¿ÉÒÔʹÓÃÐèÒª¼ÆËã·½³Ì,ʱ¼ä¸´ÔӶȸßO(n3)

¾­¹ýÇ°ÃæµÄ½éÉÜ,ÎÒÃÇ·¢ÏÖ×îС¶þ³Ë·¨ÊÊÓüò½à¸ßЧ,±ÈÌݶÈϽµÕâÑùµÄµü´ú·¨Ëƺõ·½±ãºÜ¶à¡£µ«ÊÇÕâÀïÎÒÃǾÍÁÄÁÄ×îС¶þ³Ë·¨µÄ¾ÖÏÞÐÔ¡£

  • Ê×ÏÈ,×îС¶þ³Ë·¨ÐèÒª¼ÆËã X T X X^TX XTXµÄÄæ¾ØÕó,ÓпÉÄÜËüµÄÄæ¾ØÕó²»´æÔÚ,ÕâÑù¾ÍûÓа취ֱ½ÓÓÃ×îС¶þ³Ë·¨ÁË¡£
    • ´Ëʱ¾ÍÐèҪʹÓÃÌݶÈϽµ·¨¡£µ±È»,ÎÒÃÇ¿ÉÒÔͨ¹ý¶ÔÑù±¾Êý¾Ý½øÐÐÕûÀí,È¥µôÈßÓàÌØÕ÷¡£Èà X T X X^TX XTXµÄÐÐÁÐʽ²»Îª0,È»ºó¼ÌÐøʹÓÃ×îС¶þ³Ë·¨¡£
  • µÚ¶þ,µ±Ñù±¾ÌØÕ÷n·Ç³£µÄ´óµÄʱºò,¼ÆËã X T X X^TX XTXµÄÄæ¾ØÕóÊÇÒ»¸ö·Ç³£ºÄʱµÄ¹¤×÷(nxnµÄ¾ØÕóÇóÄæ),ÉõÖÁ²»¿ÉÐС£
    • ´ËʱÒÔÌݶÈϽµÎª´ú±íµÄµü´ú·¨ÈÔÈ»¿ÉÒÔʹÓá£
    • ÄÇÕâ¸önµ½µ×¶à´ó¾Í²»ÊʺÏ×îС¶þ³Ë·¨ÄØ?Èç¹ûÄãûÓкܶàµÄ·Ö²¼Ê½´óÊý¾Ý¼ÆËã×ÊÔ´,½¨Ò鳬¹ý10000¸öÌØÕ÷¾ÍÓõü´ú·¨°É¡£»òÕßͨ¹ýÖ÷³É·Ö·ÖÎö½µµÍÌØÕ÷µÄά¶ÈºóÔÙÓÃ×îС¶þ³Ë·¨¡£
  • µÚÈý,Èç¹ûÄâºÏº¯Êý²»ÊÇÏßÐÔµÄ,ÕâʱÎÞ·¨Ê¹ÓÃ×îС¶þ³Ë·¨,ÐèҪͨ¹ýһЩ¼¼ÇÉת»¯ÎªÏßÐÔ²ÅÄÜʹÓÃ,´ËʱÌݶÈϽµÈÔÈ»¿ÉÒÔÓá£
  • µÚËÄ,ÒÔÏÂÌØÊâÇé¿ö:
    • µ±Ñù±¾Á¿mºÜÉÙ,СÓÚÌØÕ÷ÊýnµÄʱºò,ÕâʱÄâºÏ·½³ÌÊÇÇ·¶¨µÄ,³£ÓõÄÓÅ»¯·½·¨¶¼ÎÞ·¨È¥ÄâºÏÊý¾Ý¡£
    • µ±Ñù±¾Á¿mµÈÓÚÌØÕ÷ÊýnµÄʱºò,Ó÷½³Ì×éÇó½â¾Í¿ÉÒÔÁË¡£
    • µ±m´óÓÚnʱ,ÄâºÏ·½³ÌÊdz¬¶¨µÄ,Ò²¾ÍÊÇÎÒÃdz£ÓÃÓë×îС¶þ³Ë·¨µÄ³¡¾°ÁË¡£

3.2 Ë㷨ѡÔñÒÀ¾Ý:

  • С¹æÄ£Êý¾Ý:
    • Õý¹æ·½³Ì:LinearRegression
    • Áë»Ø¹é: Ridge
  • ´ó¹æÄ£Êý¾Ý:
    • ÌݶÈϽµ·¨:SGDRegressor

С½á

  • Ëðʧº¯Êý¡¾ÖªµÀ¡¿
    • ×îС¶þ³Ë·¨
  • ÏßÐԻعéÓÅ»¯·½·¨¡¾ÖªµÀ¡¿
    • Õý¹æ·½³Ì
    • ÌݶÈϽµ·¨
  • Õý¹æ·½³Ì ¨C Ò»õí¶ø¾Í¡¾ÖªµÀ¡¿
    • Ö»ÊÇÊʺÏÑù±¾ºÍÌØÕ÷±È½ÏÉÙµÄÇé¿ö
  • ÌݶÈϽµ·¨ ¨C Ñ­Ðò½¥½ø¡¾ÖªµÀ¡¿
    • ÌݶȵĸÅÄî
      • µ¥±äÁ¿ ¨C ÇÐÏß
      • ¶à±äÁ¿ ¨C ÏòÁ¿
    • ÌݶÈϽµ·¨ÖйØ×¢µÄÁ½¸ö²ÎÊý
      • ¦Á ¨C ¾ÍÊDz½³¤
        • ²½³¤Ì«Ð¡ ¨C ÏÂɽ̫Âý
        • ²½³¤Ì«´ó ¨C ÈÝÒ×Ìø¹ý¼«Ð¡Öµµã
      • ΪʲôÌݶÈÒª¼ÓÒ»¸ö¸ººÅ
        • Ìݶȷ½ÏòÊÇÉÏÉý×î¿ì·½Ïò,¸ººÅ¾ÍÊÇϽµ×î¿ì·½Ïò
  • ÌݶÈϽµ·¨ºÍÕý¹æ·½³ÌÑ¡ÔñÒÀ¾Ý¡¾ÖªµÀ¡¿
    • С¹æÄ£Êý¾Ý:
      • Õý¹æ·½³Ì:LinearRegression
      • Áë»Ø¹é: Ridge
    • ´ó¹æÄ£Êý¾Ý:
      • ÌݶÈϽµ·¨:SGDRegressor

2.5 ÌݶÈϽµ·½·¨½éÉÜ

ѧϰĿ±ê

  • Á˽âÈ«ÌݶÈϽµËã·¨µÄÔ­Àí
  • Á˽âËæ»úÌݶÈϽµËã·¨µÄÔ­Àí
  • Á˽âËæ»úƽ¾ùÌݶÈϽµËã·¨µÄÔ­Àí
  • Á˽âСÅúÁ¿ÌݶÈϽµËã·¨µÄÔ­Àí

1 ÌݶÈϽµ·¨´ó¼Ò×å

Ê×ÏÈ,ÎÒÃÇÀ´¿´Ò»ÏÂ,³£¼ûµÄÌݶÈϽµËã·¨ÓÐ:

  • È«ÌݶÈϽµËã·¨(Full gradient descent),
  • Ëæ»úÌݶÈϽµËã·¨(Stochastic gradient descent),
  • СÅúÁ¿ÌݶÈϽµËã·¨(Mini-batch gradient descent),
  • Ëæ»úƽ¾ùÌݶÈϽµËã·¨(Stochastic average gradient descent)

ËüÃǶ¼ÊÇΪÁËÕýÈ·µØµ÷½ÚȨÖØÏòÁ¿,ͨ¹ýΪÿ¸öȨÖؼÆËãÒ»¸öÌݶÈ,´Ó¶ø¸üÐÂȨֵ,ʹĿ±êº¯Êý¾¡¿ÉÄÜ×îС»¯¡£Æä²î±ðÔÚÓÚÑù±¾µÄʹÓ÷½Ê½²»Í¬¡£

1.1 È«ÌݶÈϽµËã·¨(FG)

ÅúÁ¿ÌݶÈϽµ·¨,ÊÇÌݶÈϽµ·¨×î³£ÓõÄÐÎʽ,¾ßÌå×ö·¨Ò²¾ÍÊÇÔÚ¸üвÎÊýʱʹÓÃËùÓеÄÑù±¾À´½øÐиüС£

¼ÆËãѵÁ·¼¯ËùÓÐÑù±¾Îó²î¶ÔÆäÇóºÍÔÙȡƽ¾ùÖµ×÷ΪĿ±êº¯Êý¡£

ȨÖØÏòÁ¿ÑØÆäÌݶÈÏà·´µÄ·½ÏòÒƶ¯,´Ó¶øʹµ±Ç°Ä¿±êº¯Êý¼õÉÙµÃ×î¶à¡£

ÆäÊÇÔÚÕû¸öѵÁ·Êý¾Ý¼¯ÉϼÆËãËðʧº¯Êý¹ØÓÚ²ÎÊý ¦È \theta ¦È µÄÌݶÈ:
¦È i + 1 = ¦È i ? ¦Á ¡Æ j = 0 m ( h ¦È ( x 0 ( j ) , x 1 ( j ) , ? ? , x n ( j ) ) ? y j ) x i ( j ) \large \theta_{i+1} = \theta_i - \alpha\sum_{j=0}^{m}(h_{\theta}(x_0^{(j)},x_1^{(j)},\cdots,x_n^{(j)})-y_j)x_i^{(j)} ¦Èi+1?=¦Èi??¦Áj=0¡Æm?(h¦È?(x0(j)?,x1(j)?,?,xn(j)?)?yj?)xi(j)?

ÓÉÓÚÎÒÃÇÓÐm¸öÑù±¾,ÕâÀïÇóÌݶȵÄʱºò¾ÍÓÃÁËËùÓÐm¸öÑù±¾µÄÌݶÈÊý¾Ý¡£

×¢Òâ:

  • ÒòΪÔÚÖ´ÐÐÿ´Î¸üÐÂʱ,ÎÒÃÇÐèÒªÔÚÕû¸öÊý¾Ý¼¯ÉϼÆËãËùÓеÄÌݶÈ,ËùÒÔÅúÌݶÈϽµ·¨µÄËٶȻáºÜÂý,ͬʱ,È«ÌݶÈϽµ·¨ÎÞ·¨´¦Àí³¬³öÄÚ´æÈÝÁ¿ÏÞÖƵÄÊý¾Ý¼¯¡£
  • È«ÌݶÈϽµ·¨Í¬ÑùÒ²²»ÄÜÔÚÏ߸üÐÂÄ£ÐÍ,¼´ÔÚÔËÐеĹý³ÌÖÐ,²»ÄÜÔö¼ÓеÄÑù±¾¡£

1.2 Ëæ»úÌݶÈϽµËã·¨(SG)

ÓÉÓÚFGÿµü´ú¸üÐÂÒ»´ÎȨÖض¼ÐèÒª¼ÆËãËùÓÐÑù±¾Îó²î,¶øʵ¼ÊÎÊÌâÖо­³£ÓÐÉÏÒÚµÄѵÁ·Ñù±¾,¹ÊЧÂÊÆ«µÍ,ÇÒÈÝÒ×ÏÝÈë¾Ö²¿×îÓŽâ,Òò´ËÌá³öÁËËæ»úÌݶÈϽµËã·¨¡£

ÆäÿÂÖ¼ÆËãµÄÄ¿±êº¯Êý²»ÔÙÊÇÈ«ÌåÑù±¾Îó²î,¶ø½öÊǵ¥¸öÑù±¾Îó²î,¼´Ã¿´ÎÖ»´úÈë¼ÆËãÒ»¸öÑù±¾Ä¿±êº¯ÊýµÄÌݶÈÀ´¸üÐÂȨÖØ,ÔÙÈ¡ÏÂÒ»¸öÑù±¾Öظ´´Ë¹ý³Ì,Ö±µ½Ëðʧº¯ÊýֵֹͣϽµ»òËðʧº¯ÊýֵСÓÚij¸ö¿ÉÒÔÈÝÈ̵ÄãÐÖµ¡£

´Ë¹ý³Ì¼òµ¥,¸ßЧ,ͨ³£¿ÉÒԽϺõرÜÃâ¸üеü´úÊÕÁ²µ½¾Ö²¿×îÓŽ⡣Æäµü´úÐÎʽΪ
¦È i + 1 = ¦È i ? ¦Á ( h ¦È ( x 0 ( j ) , x 1 ( j ) , ? ? , x n ( j ) ) ? y j ) x i ( j ) \large \theta_{i+1}=\theta_i-\alpha(h_{\theta}(x_0^{(j)},x_1^{(j)},\cdots,x_n^{(j)})-y_j)x_i^{(j)} ¦Èi+1?=¦Èi??¦Á(h¦È?(x0(j)?,x1(j)?,?,xn(j)?)?yj?)xi(j)?
µ«ÊÇÓÉÓÚ,SGÿ´ÎֻʹÓÃÒ»¸öÑù±¾µü´ú,ÈôÓöÉÏÔëÉùÔòÈÝÒ×ÏÝÈë¾Ö²¿×îÓŽ⡣

1.3 СÅúÁ¿ÌݶÈϽµËã·¨(mini-batch)

СÅúÁ¿ÌݶÈϽµËã·¨ÊÇFGºÍSGµÄÕÛÖз½°¸,ÔÚÒ»¶¨³Ì¶ÈÉϼæ¹ËÁËÒÔÉÏÁ½ÖÖ·½·¨µÄÓŵ㡣

ÿ´Î´ÓѵÁ·Ñù±¾¼¯ÉÏËæ»ú³éÈ¡Ò»¸öСÑù±¾¼¯,ÔÚ³é³öÀ´µÄСÑù±¾¼¯ÉϲÉÓÃFGµü´ú¸üÐÂȨÖØ¡£

±»³é³öµÄСÑù±¾¼¯Ëùº¬Ñù±¾µãµÄ¸öÊý³ÆΪbatch_size,ͨ³£ÉèÖÃΪ2µÄÃݴη½,¸üÓÐÀûÓÚGPU¼ÓËÙ´¦Àí¡£

ÌرðµÄ,Èôbatch_size=1,Ôò±ä³ÉÁËSG;Èôbatch_size=n,Ôò±ä³ÉÁËFG.Æäµü´úÐÎʽΪ
¦È i + 1 = ¦È i ? ¦Á ¡Æ j = t t + x ? 1 ( h ¦È ( x 0 ( j ) , x 1 ( j ) , ? ? , x n ( j ) ) ? y j ) x i ( j ) \large \theta_{i+1}=\theta_i-\alpha\sum_{j=t}^{t+x-1}(h_{\theta}(x_0^{(j)},x_1^{(j)},\cdots,x_n^{(j)})-y_j)x_i^{(j)} ¦Èi+1?=¦Èi??¦Áj=t¡Æt+x?1?(h¦È?(x0(j)?,x1(j)?,?,xn(j)?)?yj?)xi(j)?

ÉÏʽÖÐ,Ò²¾ÍÊÇÎÒÃÇ´Óm¸öÑù±¾ÖÐ,Ñ¡Ôñx¸öÑù±¾½øÐеü´ú(1<x<m),

1.4 Ëæ»úƽ¾ùÌݶÈϽµËã·¨(SAG)

ÔÚSG·½·¨ÖÐ,ËäÈ»±Ü¿ªÁËÔËËã³É±¾´óµÄÎÊÌâ,µ«¶ÔÓÚ´óÊý¾ÝѵÁ·¶øÑÔ,SGЧ¹û³£²»¾¡ÈçÈËÒâ,ÒòΪÿһÂÖÌݶȸüж¼ÍêÈ«ÓëÉÏÒ»ÂÖµÄÊý¾ÝºÍÌݶÈÎ޹ء£

Ëæ»úƽ¾ùÌݶÈËã·¨¿Ë·þÁËÕâ¸öÎÊÌâ,ÔÚÄÚ´æÖÐΪÿһ¸öÑù±¾¶¼Î¬»¤Ò»¸ö¾ÉµÄÌݶÈ,Ëæ»úÑ¡ÔñµÚi¸öÑù±¾À´¸üдËÑù±¾µÄÌݶÈ,ÆäËûÑù±¾µÄÌݶȱ£³Ö²»±ä,È»ºóÇóµÃËùÓÐÌݶȵÄƽ¾ùÖµ,½ø¶ø¸üÐÂÁ˲ÎÊý¡£

Èç´Ë,ÿһÂÖ¸üнöÐè¼ÆËãÒ»¸öÑù±¾µÄÌݶÈ,¼ÆËã³É±¾µÈͬÓÚSG,µ«ÊÕÁ²ËٶȿìµÃ¶à¡£

Æäµü´úÐÎʽΪ:
¦È i + 1 = ¦È i ? ¦Á n ( h ¦È ( x 0 ( j ) , x 1 ( j ) , . . . x n ( j ) ) ? y j ) x i ( j ) \large \theta_{i+1}=\theta _i-\frac{\alpha }{n}(h_\theta (x^{(j)}_0,x^{(j)}_1,...x^{(j)}_n)-y_j)x_i^{(j)} ¦Èi+1?=¦Èi??n¦Á?(h¦È?(x0(j)?,x1(j)?,...xn(j)?)?yj?)xi(j)?

  • ÎÒÃÇÖªµÀsgdÊǵ±Ç°È¨ÖؼõÈ¥²½³¤³ËÒÔÌݶÈ,µÃµ½ÐµÄȨÖØ¡£sagÖеÄa,¾ÍÊÇƽ¾ùµÄÒâ˼,¾ßÌå˵,¾ÍÊÇÔÚµÚk²½µü´úµÄʱºò,ÎÒ¿¼ÂǵÄÕâÒ»²½ºÍÇ°Ãæn-1¸öÌݶȵÄƽ¾ùÖµ,µ±Ç°È¨ÖؼõÈ¥²½³¤³ËÒÔ×î½ün¸öÌݶȵÄƽ¾ùÖµ¡£
  • nÊÇ×Ô¼ºÉèÖõÄ,µ±n=1µÄʱºò,¾ÍÊÇÆÕͨµÄsgd¡£
  • Õâ¸öÏë·¨·Ç³£µÄ¼òµ¥,ÔÚËæ»úÖÐÓÖÔö¼ÓÁËÈ·¶¨ÐÔ,ÀàËÆÓÚmini-batch sgdµÄ×÷ÓÃ,µ«²»Í¬µÄÊÇ,sagÓÖûÓÐÈ¥¼ÆËã¸ü¶àµÄÑù±¾,Ö»ÊÇÀûÓÃÁË֮ǰ¼ÆËã³öÀ´µÄÌݶÈ,ËùÒÔÿ´Îµü´úµÄ¼ÆËã³É±¾Ô¶Ð¡ÓÚmini-batch sgd,ºÍsgdÏ൱¡£Ð§¹û¶øÑÔ,sagÏà¶ÔÓÚsgd,ÊÕÁ²ËٶȿìÁ˺ܶࡣÕâÒ»µãÏÂÃæµÄÂÛÎÄÖÐÓоßÌåµÄÃèÊöºÍÖ¤Ã÷¡£
  • SAGÂÛÎÄÁ´½Ó:https://arxiv.org/pdf/1309.2388.pdf

С½á

  • È«ÌݶÈϽµËã·¨(FG)¡¾Á˽⡿
    • ÔÚ½øÐмÆËãµÄʱºò,¼ÆËãËùÓÐÑù±¾µÄÎó²îƽ¾ùÖµ,×÷ΪÎÒµÄÄ¿±êº¯Êý
  • Ëæ»úÌݶÈϽµËã·¨(SG)¡¾Á˽⡿
    • ÿ´ÎֻѡÔñÒ»¸öÑù±¾½øÐп¼ºË
  • СÅúÁ¿ÌݶÈϽµËã·¨(mini-batch)¡¾Á˽⡿
    • Ñ¡ÔñÒ»²¿·ÖÑù±¾½øÐп¼ºË
  • Ëæ»úƽ¾ùÌݶÈϽµËã·¨(SAG)¡¾Á˽⡿
    • »á¸øÿ¸öÑù±¾¶¼Î¬³ÖÒ»¸öƽ¾ùÖµ,ºóÆÚ¼ÆËãµÄʱºò,²Î¿¼Õâ¸öƽ¾ùÖµ

2.6 ÏßÐԻع鰸Àý

ѧϰĿ±ê

  • Á˽âÕý¹æ·½³ÌµÄapi¼°³£ÓòÎÊý
  • Á˽âÌݶÈϽµ·¨api¼°³£ÓòÎÊý
  • ÖªµÀÈçºÎ¶ÔÏßÐԻعéÄ£ÐͽøÐÐÆÀ¹À

1 ÏßÐԻعéAPI

  • sklearn.linear_model.LinearRegression(fit_intercept=True)
    • ͨ¹ýÕý¹æ·½³ÌÓÅ»¯
    • ²ÎÊý
      • fit_intercept:ÊÇ·ñ¼ÆËãÆ«ÖÃ
    • ÊôÐÔ
      • LinearRegression.coef_:»Ø¹éϵÊý
      • LinearRegression.intercept_:Æ«ÖÃ
  • sklearn.linear_model.SGDRegressor(loss=¡°squared_loss¡±, fit_intercept=True, learning_rate =¡®invscaling¡¯, eta0=0.01)
    • SGDRegressorÀàʵÏÖÁËËæ»úÌݶÈϽµÑ§Ï°,ËüÖ§³Ö²»Í¬µÄlossº¯ÊýºÍÕýÔò»¯³Í·£ÏîÀ´ÄâºÏÏßÐԻعéÄ£ÐÍ¡£
    • ²ÎÊý:
      • loss:ËðʧÀàÐÍ
        • loss=¡±squared_loss¡±: ÆÕͨ×îС¶þ³Ë·¨
      • fit_intercept:ÊÇ·ñ¼ÆËãÆ«ÖÃ
      • learning_rate : string, optional
        • ѧϰÂÊÌî³ä
        • ¡¯constant¡¯: eta = eta0
        • ¡¯optimal¡¯: eta = 1.0 / (alpha * (t + t0)) [default]
        • ¡®invscaling¡¯: eta = eta0 / pow(t, power_t)
          • power_t=0.25:´æÔÚ¸¸À൱ÖÐ
        • ¶ÔÓÚÒ»¸ö³£ÊýÖµµÄѧϰÂÊÀ´Ëµ,¿ÉÒÔʹÓÃlearning_rate=¡¯constant¡¯ ,²¢Ê¹ÓÃeta0À´Ö¸¶¨Ñ§Ï°ÂÊ¡£
    • ÊôÐÔ:
      • SGDRegressor.coef_:»Ø¹éϵÊý
      • SGDRegressor.intercept_:Æ«ÖÃ

sklearnÌṩ¸øÎÒÃÇÁ½ÖÖʵÏÖµÄAPI, ¿ÉÒÔ¸ù¾ÝÑ¡ÔñʹÓÃ

2 °¸Àý:²¨Ê¿¶Ù·¿¼ÛÔ¤²â

2.1 °¸Àý±³¾°½éÉÜ

  • Êý¾Ý½éÉÜ
????"¡¤??¡ã???¨¦???"??"? ?¡À??€¡ì

¸ø¶¨µÄÕâЩÌØÕ÷,ÊÇר¼ÒÃǵóöµÄÓ°Ïì·¿¼ÛµÄ½á¹ûÊôÐÔ¡£ÎÒÃǴ˽׶β»ÐèÒª×Ô¼ºÈ¥Ì½¾¿ÌØÕ÷ÊÇ·ñÓÐÓÃ,Ö»ÐèҪʹÓÃÕâЩÌØÕ÷¡£µ½ºóÃæÁ¿»¯ºÜ¶àÌØÕ÷ÐèÒªÎÒÃÇ×Ô¼ºÈ¥Ñ°ÕÒ

2.2 °¸Àý·ÖÎö

»Ø¹éµ±ÖеÄÊý¾Ý´óС²»Ò»ÖÂ,ÊÇ·ñ»áµ¼Ö½á¹ûÓ°Ïì½Ï´ó¡£ËùÒÔÐèÒª×ö±ê×¼»¯´¦Àí¡£

  • Êý¾Ý·Ö¸îÓë±ê×¼»¯´¦Àí
  • »Ø¹éÔ¤²â
  • ÏßÐԻعéµÄË㷨Ч¹ûÆÀ¹À

2.3 »Ø¹éÐÔÄÜÆÀ¹À

¾ù·½Îó²î(Mean Squared Error, MSE)ÆÀ¼Û»úÖÆ:
M S E = 1 m ¡Æ i = 1 m ( y i ? y ^ ) 2 \Large MSE = \frac{1}{m}\sum_{i=1}^{m}(y^i-\hat{y})^2 MSE=m1?i=1¡Æm?(yi?y^?)2
×¢: y i y^i yiΪԤ²âÖµ, y ^ \hat{y} y^? ΪÕæʵֵ

  • sklearn.metrics.mean_squared_error(y_true, y_pred)
    • ¾ù·½Îó²î»Ø¹éËðʧ
    • y_true:Õæʵֵ
    • y_pred:Ô¤²âÖµ
    • return:¸¡µãÊý½á¹û

2.4 ´úÂëʵÏÖ

µ¼°ü

from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import SGDRegressor
from sklearn.linear_model import LinearRegression

Õý¹æ·½³Ì

# 1.»ñÈ¡Êý¾Ý
data = load_boston()

# 2.Êý¾Ý¼¯»®·Ö
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

# 3.ÌØÕ÷¹¤³Ì-±ê×¼»¯
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 4.»úÆ÷ѧϰ-ÏßÐԻعé(Õý¹æ·½³Ì)
estimator = LinearRegression()
estimator.fit(x_train, y_train)

# 5.Ä£ÐÍÆÀ¹À
# 5.1 »ñȡϵÊýµÈÖµ
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)

# 5.2 ÆÀ¼Û
# ¾ù·½Îó²î
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)

ÌݶÈϽµ·¨

# 1.»ñÈ¡Êý¾Ý
data = load_boston()

# 2.Êý¾Ý¼¯»®·Ö
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

# 3.ÌØÕ÷¹¤³Ì-±ê×¼»¯
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)

# 4.»úÆ÷ѧϰ-ÏßÐԻعé(ÌØÕ÷·½³Ì)
estimator = SGDRegressor(max_iter=1000)
estimator.fit(x_train, y_train)

# 5.Ä£ÐÍÆÀ¹À
# 5.1 »ñȡϵÊýµÈÖµ
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)

# 5.2 ÆÀ¼Û
# ¾ù·½Îó²î
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)

ÎÒÃÇÒ²¿ÉÒÔ³¢ÊÔÈ¥ÐÞ¸ÄѧϰÂÊ

estimator = SGDRegressor(max_iter=1000,learning_rate="constant",eta0=0.1)

´ËʱÎÒÃÇ¿ÉÒÔͨ¹ýµ÷²ÎÊý,ÕÒµ½Ñ§Ï°ÂÊЧ¹û¸üºÃµÄÖµ¡£

С½á

  • Õý¹æ·½³Ì
    • sklearn.linear_model.LinearRegression()
  • ÌݶÈϽµ·¨
    • sklearn.linear_model.SGDRegressor()
  • ÏßÐԻعéÐÔÄÜÆÀ¹À¡¾ÖªµÀ¡¿
    • ¾ù·½Îó²î:sklearn.metrics.mean_squared_error

2.7 Ç·ÄâºÏºÍ¹ýÄâºÏ

ѧϰĿ±ê

  • ÕÆÎÕ¹ýÄâºÏ¡¢Ç·ÄâºÏµÄ¸ÅÄî
  • ÕÆÎÕ¹ýÄâºÏ¡¢Ç·ÄâºÏ²úÉúµÄÔ­Òò
  • ÖªµÀʲôÊÇÕýÔò»¯,ÒÔ¼°ÕýÔò»¯µÄ·ÖÀà

1 ¶¨Òå

  • ¹ýÄâºÏ:Ò»¸ö¼ÙÉèÔÚѵÁ·Êý¾ÝÉÏÄܹ»»ñµÃ±ÈÆäËû¼ÙÉè¸üºÃµÄÄâºÏ, µ«ÊÇÔÚ²âÊÔÊý¾Ý¼¯ÉÏÈ´²»ÄܺܺõØÄâºÏÊý¾Ý(ÌåÏÖÔÚ׼ȷÂÊϽµ),´ËʱÈÏΪÕâ¸ö¼ÙÉè³öÏÖÁ˹ýÄâºÏµÄÏÖÏó¡£(Ä£Ð͹ýÓÚ¸´ÔÓ)

  • Ç·ÄâºÏ:Ò»¸ö¼ÙÉèÔÚѵÁ·Êý¾ÝÉϲ»ÄÜ»ñµÃ¸üºÃµÄÄâºÏ,²¢ÇÒÔÚ²âÊÔÊý¾Ý¼¯ÉÏÒ²²»ÄܺܺõØÄâºÏÊý¾Ý,´ËʱÈÏΪÕâ¸ö¼ÙÉè³öÏÖÁËÇ·ÄâºÏµÄÏÖÏó¡£(Ä£Ð͹ýÓÚ¼òµ¥)

  • ¹ýÄâºÏºÍÇ·ÄâºÏµÄÇø±ð:

    ?? ??????¨¨????????????¡èo
    • Ç·ÄâºÏÔÚѵÁ·¼¯ºÍ²âÊÔ¼¯ÉϵÄÎó²î¶¼½Ï´ó
    • ¹ýÄâºÏÔÚѵÁ·¼¯ÉÏÎó²î½ÏС,¶ø²âÊÔ¼¯ÉÏÎó²î½Ï´ó
  • ͨ¹ý´úÂëÈÏʶ¹ýÄâºÏºÍÇ·ÄâºÏ

    • »æÖÆÊý¾Ý

      import numpy as np
      import matplotlib.pyplot as plt
      
      np.random.seed(666)
      # np.random.uniform() ÔÚ[-3,3)·¶Î§ÄÚËæ»úÉú³É100¸öÊý
      x = np.random.uniform(-3,3,size = 100)
      
      # ת»»³É¶þάÊý×é,±ä³ÉÒ»ÁÐ
      X = x.reshape(-1,1)
      # np.random.normal() Éú³É100¸ö·ûºÏÕý̬·Ö²¼µÄÊý,¾ùֵΪ0,±ê×¼²îΪ1
      y = 0.5* x**2 + x+2 + np.random.normal(0,1,size = 100)
      
      from sklearn.linear_model import LinearRegression
      estimator = LinearRegression()
      estimator.fit(X,y)
      y_predict = estimator.predict(X)
      
      plt.scatter(x,y)
      plt.plot(x,y_predict,color = 'r')
      plt.show()
      

      [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-GXAeZjdK-1631190399729)(./pics/1.png)]

      #¼ÆËã¾ù·½Îó²î
      from sklearn.metrics import mean_squared_error
      mean_squared_error(y,y_predict)
      
      #3.0750025765636577
      
    • Ìí¼Ó¶þ´ÎÏî,»æÖÆͼÏñ

      # Ìí¼Ó¶þ´ÎÏî
      X2 = np.hstack([X,X**2])
      estimator2 = LinearRegression()
      estimator2.fit(X2,y)
      y_predict2 = estimator2.predict(X2)
      
      plt.scatter(x,y)
      plt.plot(np.sort(x),y_predict2[np.argsort(x)],color = 'r')
      plt.show()
      
      #¼ÆËã¾ù·½Îó²îºÍ׼ȷÂÊ
      
      from sklearn.metrics import mean_squared_error
      mean_squared_error(y,y_predict2)
      
      #1.0987392142417858
      

      [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-2rFw5c3P-1631190399731)(./pics/2.png)]

    • ÔٴμÓÈë¸ß´ÎÏî,»æÖÆͼÏñ,¹Û²ì¾ù·½Îó²î½á¹û

      X5 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10])
      
      estimator3 = LinearRegression()
      estimator3.fit(X5,y)
      y_predict5 = estimator3.predict(X5)
      
      plt.scatter(x,y)
      plt.plot(np.sort(x),y_predict5[np.argsort(x)],color = 'r')
      plt.show()
      
      error = mean_squared_error(y, y_predict5)
      error
      
      #1.0508466763764157
      

      [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-BVmS9ckb-1631190399732)(./pics/3.png)]

    ͨ¹ýÉÏÊö¹Û²ì·¢ÏÖ,Ëæ׿ÓÈëµÄ¸ß´ÎÏîÔ½À´Ô½¶à,ÄâºÏ³Ì¶ÈÔ½À´Ô½¸ß,¾ù·½Îó²îÒ²Ëæ׿ÓÈëÔ½À´Ô½Ð¡¡£ËµÃ÷ÒѾ­²»ÔÙÇ·ÄâºÏÁË¡£

    ÎÊÌâ:ÈçºÎÅжϳöÏÖ¹ýÄâºÏÄØ?

    • ½«Êý¾Ý¼¯½øÐл®·Ö:¶Ô±ÈX¡¢X2¡¢X5µÄ²âÊÔ¼¯µÄ¾ù·½Îó²î

      • XµÄ²âÊÔ¼¯¾ù·½Îó²î

        X_train,X_test,y_train,y_test = train_test_split(X,y,random_state = 5)
        estimator = LinearRegression()
        estimator.fit(X_train,y_train)
        y_predict = estimator.predict(X_test)
        
        mean_squared_error(y_test,y_predict)
        #3.153139806483088
        
      • X2µÄ²âÊÔ¼¯¾ù·½Îó²î

        X_train,X_test,y_train,y_test = train_test_split(X2,y,random_state = 5)
        estimator = LinearRegression()
        estimator.fit(X_train,y_train)
        y_predict = estimator.predict(X_test)
        mean_squared_error(y_test,y_predict)
        #1.111873885731967
        
      • X5µÄ²âÊÔ¼¯µÄ¾ù·½Îó²î

        X_train,X_test,y_train,y_test = train_test_split(X5,y,random_state = 5)
        estimator = LinearRegression()
        estimator.fit(X_train,y_train)
        y_predict = estimator.predict(X_test)
        mean_squared_error(y_test,y_predict)
        #1.4145580542309835
        

2 Ô­ÒòÒÔ¼°½â¾ö°ì·¨

  • Ç·ÄâºÏÔ­ÒòÒÔ¼°½â¾ö°ì·¨
    • Ô­Òò:ѧϰµ½Êý¾ÝµÄÌØÕ÷¹ýÉÙ
    • ½â¾ö°ì·¨:
      • **1)Ìí¼ÓÆäËûÌØÕ÷Ïî,**ÓÐʱºòÎÒÃÇÄ£ÐͳöÏÖÇ·ÄâºÏµÄʱºòÊÇÒòΪÌØÕ÷Ïî²»¹»µ¼ÖµÄ,¿ÉÒÔÌí¼ÓÆäËûÌØÕ÷ÏîÀ´ºÜºÃµØ½â¾ö¡£
      • 2)Ìí¼Ó¶àÏîʽÌØÕ÷,Õâ¸öÔÚ»úÆ÷ѧϰËã·¨ÀïÃæÓõĺÜÆÕ±é,ÀýÈ罫ÏßÐÔÄ£ÐÍͨ¹ýÌí¼Ó¶þ´ÎÏî»òÕßÈý´ÎÏîʹģÐÍ·º»¯ÄÜÁ¦¸üÇ¿¡£
  • ¹ýÄâºÏÔ­ÒòÒÔ¼°½â¾ö°ì·¨
    • Ô­Òò:ԭʼÌØÕ÷¹ý¶à,´æÔÚһЩàÐÔÓÌØÕ÷, Ä£Ð͹ýÓÚ¸´ÔÓÊÇÒòΪģÐͳ¢ÊÔÈ¥¼æ¹Ë¸÷¸ö²âÊÔÊý¾Ýµã
    • ½â¾ö°ì·¨:
      • 1)ÖØÐÂÇåÏ´Êý¾Ý,µ¼Ö¹ýÄâºÏµÄÒ»¸öÔ­ÒòÒ²ÓпÉÄÜÊÇÊý¾Ý²»´¿µ¼ÖµÄ,Èç¹û³öÏÖÁ˹ýÄâºÏ¾ÍÐèÒªÎÒÃÇÖØÐÂÇåÏ´Êý¾Ý¡£
      • 2)Ôö´óÊý¾ÝµÄѵÁ·Á¿,»¹ÓÐÒ»¸öÔ­Òò¾ÍÊÇÎÒÃÇÓÃÓÚѵÁ·µÄÊý¾ÝÁ¿Ì«Ð¡µ¼ÖµÄ,ѵÁ·Êý¾ÝÕ¼×ÜÊý¾ÝµÄ±ÈÀý¹ýС¡£
      • 3)ÕýÔò»¯
      • 4)¼õÉÙÌØÕ÷ά¶È

3 ÕýÔò»¯

3.1 ʲôÊÇÕýÔò»¯

ÔÚ½â¾ö»Ø¹é¹ýÄâºÏÖÐ,ÎÒÃÇÑ¡ÔñÕýÔò»¯¡£µ«ÊǶÔÓÚÆäËû»úÆ÷ѧϰËã·¨Èç·ÖÀàËã·¨À´ËµÒ²»á³öÏÖÕâÑùµÄÎÊÌâ,³ýÁËһЩËã·¨±¾Éí×÷ÓÃÖ®Íâ(¾ö²ßÊ÷¡¢Éñ¾­ÍøÂç),ÎÒÃǸü¶àµÄÒ²ÊÇÈ¥×Ô¼º×öÌØÕ÷Ñ¡Ôñ,°üÀ¨Ö®Ç°ËµµÄɾ³ý¡¢ºÏ²¢Ò»Ð©ÌØÕ÷

?¡§?????¡è????

ÈçºÎ½â¾ö?

?-¡ê?????¨C

ÔÚѧϰµÄʱºò,Êý¾ÝÌṩµÄÌØÕ÷ÓÐЩӰÏìÄ£Ð͸´ÔӶȻòÕßÕâ¸öÌØÕ÷µÄÊý¾ÝµãÒì³£½Ï¶à,ËùÒÔËã·¨ÔÚѧϰµÄʱºò¾¡Á¿¼õÉÙÕâ¸öÌØÕ÷µÄÓ°Ïì(ÉõÖÁɾ³ýij¸öÌØÕ÷µÄÓ°Ïì),Õâ¾ÍÊÇÕýÔò»¯

×¢:µ÷Õûʱºò,Ëã·¨²¢²»ÖªµÀij¸öÌØÕ÷Ó°Ïì,¶øÊÇÈ¥µ÷Õû²ÎÊýµÃ³öÓÅ»¯µÄ½á¹û

3.2 ÕýÔò»¯Àà±ð

  • L2ÕýÔò»¯
    • ×÷ÓÃ:¿ÉÒÔʹµÃÆäÖÐWµÄ±äС,ÆäÖкÜСµÄwÖµ»áÇ÷½üÓÚ0,Ï÷ÈõijЩÌØÕ÷µÄÓ°Ïì
    • Óŵã:ԽСµÄ²ÎÊý˵Ã÷Ä£ÐÍÔ½¼òµ¥,Ô½¼òµ¥µÄÄ£ÐÍÔòÔ½²»ÈÝÒײúÉú¹ýÄâºÏÏÖÏó
    • Ridge»Ø¹é: from sklearn.linear_model import Ridge
  • L1ÕýÔò»¯
    • ×÷ÓÃ:¿ÉÒÔʹµÃÆäÖÐһЩÌØÕ÷WµÄÖµÖ±½ÓΪ0,ɾ³ýÕâЩÌØÕ÷µÄÓ°Ïì
    • LASSO»Ø¹é: from sklearn.linear_model import Lasso
  • ÕýÔò»¯°¸Àý
X10 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10]) 
estimator3 = LinearRegression() 
estimator3.fit(X10,y) 
y_predict3 = estimator3.predict(X10) 

plt.scatter(x,y) 
plt.plot(np.sort(x),y_predict3[np.argsort(x)],color = 'r') 
plt.show()

# ´òÓ¡»Ø¹éϵÊý
estimator3.coef_

## չʾ½á¹û
array([ 1.32292089e+00,  2.03952017e+00, -2.88731664e-01, -1.24760429e+00,
        8.06147066e-02,  3.72878513e-01, -7.75395040e-03, -4.64121137e-02,
        1.84873446e-04,  2.03845917e-03])
from sklearn.linear_model import Lasso  # L1ÕýÔò
from sklearn.linear_model import Ridge  # Áë»Ø¹é L2ÕýÔò

X10 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10]) 
estimator_l1 = Lasso(alpha=0.005,normalize=True) # µ÷Õûalpha ÕýÔò»¯Ç¿¶È ²é¿´ÕýÔò»¯Ð§¹û normalize=True Êý¾Ý±ê×¼»¯
estimator_l1.fit(X10,y) 
y_predict_l1 = estimator_l1.predict(X10) 

plt.scatter(x,y) 
plt.plot(np.sort(x),y_predict_l1[np.argsort(x)],color = 'r') 
plt.show()

estimator_l1.coef_  # Lasso »Ø¹é  L1ÕýÔò »á½«¸ß´Î·½ÏîϵÊý±äΪ0

array([ 0.97284077,  0.4850203 ,  0.        ,  0.        , -0.        ,
        0.        , -0.        ,  0.        , -0.        ,  0.        ])
X10 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10]) 
estimator_l2 = Ridge(alpha=0.005,normalize=True) # µ÷Õûalpha ÕýÔò»¯Ç¿¶È ²é¿´ÕýÔò»¯Ð§¹û
estimator_l2.fit(X10,y) 
y_predict_l2 = estimator_l2.predict(X10) 

plt.scatter(x,y) 
plt.plot(np.sort(x),y_predict_l2[np.argsort(x)],color = 'r') 
plt.show()

estimator_l2.coef_   # l2 ÕýÔò²»»á½«ÏµÊý±äΪ0 µ«ÊǶԸߴη½ÏîϵÊýÓ°Ïì½Ï´ó

array([ 9.91283840e-01,  5.24820573e-01,  1.57614237e-02,  2.34128982e-03,
        7.26947948e-04, -2.99893698e-04, -8.28333499e-05, -4.51949529e-05,
       -4.21312015e-05, -8.22992826e-07])

[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-IEkiST1C-1631190399735)(./pics/26img.png)]

4 Áë»Ø¹é°¸Àý

4.1 Áë»Ø¹éµÄAPI

  • sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=¡°auto¡±, normalize=False)
    • ¾ßÓÐl2ÕýÔò»¯µÄÏßÐԻعé
    • alpha:ÕýÔò»¯Á¦¶È,Ò²½Ð ¦Ë
      • ¦ËÈ¡Öµ:0~1 1~10
    • solver:»á¸ù¾ÝÊý¾Ý×Ô¶¯Ñ¡ÔñÓÅ»¯·½·¨
      • sag:Èç¹ûÊý¾Ý¼¯¡¢ÌØÕ÷¶¼±È½Ï´ó,Ñ¡Ôñ¸ÃËæ»úÌݶÈϽµÓÅ»¯
    • normalize:Êý¾ÝÊÇ·ñ½øÐбê×¼»¯
      • normalize=False:¿ÉÒÔÔÚfit֮ǰµ÷ÓÃpreprocessing.StandardScaler±ê×¼»¯Êý¾Ý
    • Ridge.coef_:»Ø¹éȨÖØ
    • Ridge.intercept_:»Ø¹éÆ«ÖÃ

Ridge·½·¨Ï൱ÓÚSGDRegressor(penalty=¡®l2¡¯, loss=¡°squared_loss¡±),Ö»²»¹ýSGDRegressorʵÏÖÁËÒ»¸öÆÕͨµÄËæ»úÌݶÈϽµÑ§Ï°,ÍƼöʹÓÃRidge(ʵÏÖÁËSAG)

  • sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)
    • ¾ßÓÐl2ÕýÔò»¯µÄÏßÐԻعé,¿ÉÒÔ½øÐн»²æÑéÖ¤
    • coef_:»Ø¹éϵÊý
class _BaseRidgeCV(LinearModel):
    def __init__(self, alphas=(0.1, 1.0, 10.0),
                 fit_intercept=True, normalize=False,scoring=None,
                 cv=None, gcv_mode=None,
                 store_cv_values=False):

4.2 ÕýÔò»¯³Ì¶ÈµÄ±ä»¯,¶Ô½á¹ûµÄÓ°Ïì

?-¡ê?????¨C????o|

  • ÕýÔò»¯Á¦¶ÈÔ½´ó,ȨÖØϵÊý»áԽС
  • ÕýÔò»¯Á¦¶ÈԽС,ȨÖØϵÊý»áÔ½´ó

4.3 Áë»Ø¹éʵÏÖ²¨Ê¿¶Ù·¿¼ÛÔ¤²â

# 1.»ñÈ¡Êý¾Ý
data = load_boston()

# 2.Êý¾Ý¼¯»®·Ö
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

# 3.ÌØÕ÷¹¤³Ì-±ê×¼»¯
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 4.»úÆ÷ѧϰ-ÏßÐԻعé(Áë»Ø¹é)
estimator = Ridge(alpha=1)
# estimator = RidgeCV(alphas=(0.1, 1, 10))
estimator.fit(x_train, y_train)

# 5.Ä£ÐÍÆÀ¹À
# 5.1 »ñȡϵÊýµÈÖµ
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)

# 5.2 ÆÀ¼Û
# ¾ù·½Îó²î
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)

С½á

  • Ç·ÄâºÏ¡¾ÕÆÎÕ¡¿
    • ÔÚѵÁ·¼¯ÉϱíÏÖ²»ºÃ,ÔÚ²âÊÔ¼¯ÉϱíÏÖ²»ºÃ
    • ½â¾ö·½·¨:
      • ¼ÌÐøѧϰ
        • 1.Ìí¼ÓÆäËûÌØÕ÷Ïî
        • 2.Ìí¼Ó¶àÏîʽÌØÕ÷
  • ¹ýÄâºÏ¡¾ÕÆÎÕ¡¿
    • ÔÚѵÁ·¼¯ÉϱíÏÖºÃ,ÔÚ²âÊÔ¼¯ÉϱíÏÖ²»ºÃ
    • ½â¾ö·½·¨:
      • 1.ÖØÐÂÇåÏ´Êý¾Ý¼¯
      • 2.Ôö´óÊý¾ÝµÄѵÁ·Á¿
      • 3.ÕýÔò»¯
      • 4.¼õÉÙÌØÕ÷ά¶È
  • ÕýÔò»¯¡¾ÕÆÎÕ¡¿
    • ͨ¹ýÏÞÖƸߴÎÏîµÄϵÊý½øÐзÀÖ¹¹ýÄâºÏ
    • L1ÕýÔò»¯
      • Àí½â:Ö±½Ó°Ñ¸ß´ÎÏîÇ°ÃæµÄϵÊý±äΪ0
      • Lasso»Ø¹é
      • from sklearn.linear_model import Lasso
    • L2ÕýÔò»¯
      • Àí½â:°Ñ¸ß´ÎÏîÇ°ÃæµÄϵÊý±ä³ÉÌرðСµÄÖµ
      • Áë»Ø¹é

2.8 Ä£Ð͵ı£´æºÍ¼ÓÔØ

ѧϰĿ±ê

  • ÖªµÀsklearnÖÐÄ£Ð͵ı£´æºÍ¼ÓÔØ

1 sklearnÄ£Ð͵ı£´æºÍ¼ÓÔØAPI

  • from sklearn.externals import joblib
    • ±£´æ:joblib.dump(estimator, ¡®test.pkl¡¯)
    • ¼ÓÔØ:estimator = joblib.load(¡®test.pkl¡¯)
    • ×¢Òâ:0.21°æ±¾ÒÔÏ¿ÉÒÔʹÓÃsklearn.externals.joblib,а汾ÐèÒª°²×°joblibpip install joblibimport joblib

2 ÏßÐԻعéµÄÄ£Ðͱ£´æ¼ÓÔØ°¸Àý

# 1.»ñÈ¡Êý¾Ý
data = load_boston()

# 2.Êý¾Ý¼¯»®·Ö
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)

# 3.ÌØÕ÷¹¤³Ì-±ê×¼»¯
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)

# 4.»úÆ÷ѧϰ-ÏßÐԻعé(Áë»Ø¹é)
# 4.1 Ä£ÐÍѵÁ·
estimator = Ridge(alpha=1)
estimator.fit(x_train, y_train)

# 4.2 Ä£Ðͱ£´æ
joblib.dump(estimator, "./data/test.pkl")

# 4.3 Ä£ÐͼÓÔØ
estimator = joblib.load("./data/test.pkl")

# 5.Ä£ÐÍÆÀ¹À
# 5.1 »ñȡϵÊýµÈÖµ
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)

# 5.2 ÆÀ¼Û
# ¾ù·½Îó²î
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)

3 С½á

  • sklearn.externals import joblib¡¾ÖªµÀ¡¿
    • ±£´æ:joblib.dump(estimator, ¡®test.pkl¡¯)
    • ¼ÓÔØ:estimator = joblib.load(¡®test.pkl¡¯)
    • ×¢Òâ:
      • 1.±£´æÎļþ,ºó׺ÃûÊÇ**.pkl
      • 2.¼ÓÔØÄ£ÐÍÊÇÐèҪͨ¹ýÒ»¸ö±äÁ¿½øÐгнÓ

2.9 ÏßÐԻعéÓ¦ÓÃ-»Ø¹é·ÖÎö

ѧϰĿ±ê

  • ÖªµÀÏßÐԻعéµÄ³£¼ûÂäµØ³¡¾°

1¡¢Ê²Ã´Êǻعé·ÖÎö

  • »Ø¹éÊÇÑо¿×Ô±äÁ¿x¶ÔÒò±äÁ¿yÓ°ÏìµÄÒ»ÖÖÊý¾Ý·ÖÎö·½·¨
    • ×î¼òµ¥µÄ»Ø¹éÄ£ÐÍÊÇÒ»ÔªÏßÐԻعé,¿ÉÒÔ±íʾΪY=¦Â0+¦Â1x+¦Å,ÆäÖÐYΪÒò±äÁ¿,xΪ×Ô±äÁ¿,¦Â1ΪӰÏìϵÊý,¦Â0Ϊ½Ø¾à,¦ÅΪËæ»úÎó²î¡£
    • »Ø¹é·ÖÎöÊǹ㷺ӦÓõÄͳ¼Æ·ÖÎö·½·¨,¿ÉÓÃÓÚ·ÖÎö×Ô±äÁ¿ºÍÒò±äÁ¿µÄÓ°Ïì¹Øϵ(ͨ¹ý×Ô±äÁ¿ÇóÒò±äÁ¿),Ò²¿ÉÒÔ·ÖÎö×Ô±äÁ¿¶ÔÒò±äÁ¿µÄÓ°Ïì·½Ïò(ÕýÏòÓ°Ï컹ÊǸºÏòÓ°Ïì)¡£
    • »Ø¹é·ÖÎöµÄÖ÷ÒªÓ¦Óó¡¾°ÊǽøÐÐÔ¤²âºÍ¿ØÖÆ,ÀýÈç¼Æ»®Öƶ¨¡¢KPIÖƶ¨¡¢Ä¿±êÖƶ¨µÈ;Ò²¿ÉÒÔ»ùÓÚÔ¤²âµÄÊý¾ÝÓëʵ¼ÊÊý¾Ý½øÐбȶԺͷÖÎö,È·¶¨Ê¼þ·¢Õ¹³Ì¶È²¢¸øδÀ´Ðж¯Ìṩ·½ÏòÐÔÖ¸µ¼¡£
    • ³£ÓõĻعéËã·¨°üÀ¨ÏßÐԻع顢¶àÏîʽ»Ø¹éµÈ
    • »Ø¹é·ÖÎöµÄÓŵãÊÇÊý¾ÝģʽºÍ½á¹û±ãÓÚÀí½â,ÈçÏßÐԻعéÓÃy=ax+bµÄÐÎʽ±í´ï,ÔÚ½âÊͺÍÀí½â×Ô±äÁ¿ÓëÒò±äÁ¿¹ØϵʽÏà¶ÔÈÝÒ×;ÔÚ»ùÓÚº¯Êý¹«Ê½µÄÒµÎñÓ¦ÓÃÖÐ,¿ÉÒÔÖ±½ÓʹÓôúÈë·¨Çó½â,Òò´ËÓ¦ÓÃÆðÀ´±È½ÏÈÝÒס£
    • »Ø¹é·ÖÎöµÄȱµãÊÇÖ»ÄÜ·ÖÎöÉÙÁ¿±äÁ¿Ö®¼äµÄÏ໥¹Øϵ,ÎÞ·¨´¦Àíº£Á¿±äÁ¿¼äµÄÏ໥×÷ÓùØϵ,ÓÈÆäÊDZäÁ¿¹²Í¬ÒòËضÔÒò±äÁ¿µÄÓ°Ïì³Ì¶È¡£

2¡¢»Ø¹é·ÖÎöÂäµØ³¡¾°

  • ÔÚ¸÷ÖÖýÌåÉÏͶ·ÅµÄ¹ã¸æ¶Ô×îÖÕÏúÊÛËù²úÉúµÄЧ¹ûÑо¿
    • ¹«Ë¾¿ÉÒÔͶÈëµÄÓªÏúÇþµÀ
      • ´«Í³´óÖÚýÌå:µçÊÓ ¹ã²¥ »§Íâ¹ã¸æ
      • Ö±ÏúýÌå:µç×ÓÓʼþ,¶ÌÐÅ,µç»°
      • Êý×ÖýÌå:app ΢ÐÅ Éç½»Ó¦ÓÃ
    • ͨ¹ý»Ø¹é·ÖÎö¿ÉÒԻشð
      • ²»Í¬ÓªÏúÇþµÀÊÇÈçºÎ´Ù½øÏúÊÛµÄ
      • ÈçºÎµ÷ÕûÓªÏú×éºÏʹÿһ·ÝÖ§³ö»ñÈ¡×î´óÊÕÒæ
      • ͬʱÔÚ²»Í¬ÇþµÀ½øÐйã¸æÓªÏú,ÄĸöЧ¹û¸üÃ÷ÏÔ
    • ÏúÊÛÁ¿ = ÓªÏú±äÁ¿ + Îó²îÒòËØ
      • ÓªÏú±äÁ¿ : ¿É¿ØµÄÇþµÀͶÈë
        • ÏßÉϲúÆ·:΢Њ΢²© Í·Ìõ
        • ´«Í³²úÆ·:µçÉÌ Î¢ÐÅ »§Íâ µçÊÓ
      • Îó²îÒòËØ:²»¿É¿ØµÄËùÓÐÒòËØ
        • ¾­¼Ã´ó»·¾³,¼¾½Ú,¼ÙÆÚ,¶ÔÊÖ
    • ÓªÏú±äÁ¿ºÍÏúÊÛÁ¿Ö®¼äÊÇÏßÐÔ¹Øϵ
      • ÓªÏúͶÈëÔ½´ó,ÏúÊÛÁ¿Ò²»á¶ÔÓ¦µÄÖð²½Ìá¸ß
    • »Ø¹é·ÖÎöÄ£ÐÍ:ÏúÊÛ¶î =93765+0.3* °Ù¶È+0.15 * É罻ýÌå+0.05 *µç»°Ö±Ïú+0.02 * ¶ÌÐÅ
      • ÏßÐԻعéÄ£ÐÍ,¼ÙÉè½âÊͱäÁ¿ºÍÒò±äÁ¿Ö®¼äÊÇÏßÐÔ¹Øϵ,µ«Êµ¼ÊÇé¿ö,ÏúÊÛÊÕÈë²»»áËæ׏ã¸æµÄͶÈë¶øÒ»Ö±ÉÏÉý
      • ʹÓûعéÄ£Ð͵Ľá¹û,×îÖ÷ÒªµÄ»¹Êǹ۲ì¸÷¸öÒòËصĴóС×öºáÏò¶Ô±È
  • »Ø¹é·ÖÎöµÄ½á¹û,×ÅÖØÓÚ²»Í¬X¶ÔÓÚYÓ°ÏìµÄ¶Ô±È,Ö±½ÓÔ¤²âYµÄ³¡¾°½ÏÉÙ

3¡¢»Ø¹é·ÖÎöʵս

  • ÏúÊÛ¶îÔ¤²â·ÖÎö

    • ¿ìÏûÆóÒµ,·ÖÎöÄ¿µÄ
      • ¶ÔÉ̳¬ÃŵêµÄÏúÊÛ¶î½øÐÐÔ¤²â
      • Á¿»¯×ÔÉíËùÄÜ¿ØÖƵĸ÷ÖÖ´ÙÏúÒòËØËùÄܲúÉúµÄЧ¹û
      • ¶ÔÓªÏú×ÊÔ´×ö³öºÏÀí¹æ»®
    • ´«Í³¿ìÏûÆóÒµ,Êý¾ÝÌصã
      • ¾ÛºÏÀàµÄÊý¾Ý
      • ÇþµÀÖÚ¶à,ÎÞ·¨¾«×¼Á˽âÓû§
    • ±¾ÀýÖÐ,ͨ¹ý»Ø¹é·ÖÎöʵÏÖ¶Ô¸÷ÀàÒòËØͶÈë²ú³ö±È×ö³öÆÀ¹À
      • ·ÖÎöÊý¾Ý
        • µçÊÓ¹ã¸æ,ÏßÉÏ,ÏßÏÂ,ÃŵêÄÚ,΢ÐÅÇþµÀµÈ´ÙÏúͶÈëºÍÏúÊÛ¶îÖ®¼äµÄ¹Øϵ
      • Êý¾Ý˵Ã÷ (ÒÔÔÂΪ¹Û²â´°¿Ú)
        • Revenue ÃŵêÏúÊÛ¶î
        • Reach ΢ÐŹã¸æ´ÎÊý
        • Local_tv ±¾µØµçÊÓ¹ã¸æͶÈë
        • Online ÏßÉϹã¸æͶÈë
        • Instore ÃŵêÄÚº£±¨µÈͶÈë
        • Person Ãŵê´ÙÏúÈËÔ±
        • Event ´ÙÏúʼþ
          • cobranding Æ·ÅÆÁªºÏ´ÙÏú
          • holiday ½Ú¼ÙÈÕ
          • special ÃŵêÌرð´ÙÏú
          • non-event ÎÞ´ÙÏú»î¶¯
      • ·ÖÎöÁ÷³Ì:Êý¾Ý¸Å¿ö·ÖÎö->µ¥±äÁ¿·ÖÎö->Ïà¹ØÐÔ·ÖÎöÓë¿ÉÊÓ»¯->»Ø¹éÄ£ÐÍ
        • Êý¾Ý¸Å¿ö·ÖÎö
          • Êý¾ÝÐÐ/ÁÐÊýÁ¿
          • ȱʧֵ·Ö²¼
        • µ¥±äÁ¿·ÖÎö
          • Êý×ÖÐͱäÁ¿µÄÃèÊöÖ¸±ê(ƽ¾ùÖµ,×î´ó×îСֵ,±ê×¼²î)
          • Àà±ðÐͱäÁ¿(¶àÉÙ¸ö·ÖÀà,¸÷×ÔÕ¼±È)
        • Ïà¹ØÐÔ·ÖÎöÓë¿ÉÊÓ»¯
          • °´Àà±ð½»²æ¶Ô±È
          • ±äÁ¿Ö®¼äµÄÏà¹ØÐÔ·ÖÎö
          • É¢µãͼ/ÈÈÁ¦Í¼
        • »Ø¹é·ÖÎö
          • Ä£Ðͽ¨Á¢
          • Ä£ÐÍÆÀ¹ÀÓëÓÅ»¯
    • ´úÂë
    import pandas as pd
    #Êý¾Ý¶ÁÈ¡#
    #index_col=0 ,Êý¾ÝµÄµÚÒ»ÁÐÊÇË÷Òý,Ö¸¶¨Ë÷ÒýÁÐ
    store=pd.read_csv('data/store_rev.csv',index_col=0)
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-Env28gXu-1631190399737)(pics/p&g_regression1.png)]

    #Êý¾ÝµÄ»ù±¾ÐÅÏ¢
    #·¢ÏÖlocal_tvÓÐ50¶à¸ö¿ÕÖµ
    #·¢ÏÖeventÊÇobject,¼´Àà±ðÐͱäÁ¿
    store.info()
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-1bWVRy7F-1631190399737)(pics/p&g_regression2.png)]

    #ͳ¼Æ¸÷¸öÁÐÄÄЩÊÇ¿ÕÖµ
    #·¢ÏÖlocal_tvÓÐ56¸ö¿ÕÖµ
    store.isnull().sum()
    
    '''
    revenue      0
    reach        0
    local_tv    56
    online       0
    instore      0
    person       0
    event        0
    dtype: int64
    '''
    
    #Á˽âÊý¾ÝµÄ·Ö²¼
    #ÅжÏÊý¾ÝÊÇ·ñ·ûºÏÒµÎñ³¡¾°
    store.describe()
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-dtR7jUmJ-1631190399738)(pics/p&g_regression3.png)]

    #Á˽âeventµÄ¾ßÌåÖµ
    store.event.unique()
    #array(['non_event', 'special', 'cobranding', 'holiday'], dtype=object)
    #ÕâЩÀà±ð¶ÔÓ¦µÄrevenue(ÏúÊÛ¶î)ÊÇÔõÑùµÄ
    store.groupby(['event'])['revenue'].describe()
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-cU5M1wHr-1631190399739)(pics/p&g_regression4.png)]

    #Õ⼸¸öÀà±ð¶ÔÓ¦µÄlocal_tv(±¾µØµçÊÓ¹ã¸æͶÈë)ÊÇÔõÑùµÄ
    store.groupby(['event'])['local_tv'].describe()
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-Mu28SvwC-1631190399739)(pics/p&g_regression5.png)]

    • Ïà¹ØÐÔ·ÖÎö
    #ËùÓбäÁ¿,ÈÎÒâÁ½¸ö±äÁ¿Ïà¹Ø·ÖÎö
    #local_tv,person,instoreÊDZȽϺõÄÖ¸±ê,ÓërevenueÏà¹Ø¶È¸ß
    store.corr()
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-yjIWvUKY-1631190399740)(pics/p&g_regression7.png)]

    #ÆäËû±äÁ¿ÓërevenueµÄÏà¹Ø·ÖÎö
    #sort_values ½«revenueÅÅÐò,ascendingĬÈÏÉýÐò,FalseΪ½µÐòÅÅÁÐ
    #¿´µ½Ç°3¸öÏà¹Ø±äÁ¿Îªlocal_tv,person,instore
    store.corr()[['revenue']].sort_values('revenue',ascending=False)
    '''
    	               revenue
    revenue	           1.000000
    local_tv	       0.602114
    person	           0.559208
    instore	           0.311739
    online	            0.171227
    event_special	    0.033752
    event_cobranding	-0.005623
    event_holiday	    -0.016559
    event_non_event	    -0.019155
    reach	            -0.155314
    '''
    
    • ¿ÉÊÓ»¯·ÖÎö
    #¿ÉÊÓ»¯·ÖÎö
    import seaborn as sns
    import matplotlib.pyplot as plt
    #ÏßÐÔ¹Øϵ¿ÉÊÓ»¯
    #бÂÊÓëÏà¹ØϵÊýÓйØ
    sns.regplot(x='local_tv',y='revenue',data=store)
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-UKqwBqOB-1631190399741)(pics/p&g_regression8.png)]

    #ÏßÐÔ¹Øϵ¿ÉÊÓ»¯
    sns.regplot(x='person',y='revenue',data=store)
    
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-xJrACbSX-1631190399742)(pics/p&g_regression9.png)]

    sns.regplot(x='instore',y='revenue',data=store)
    
    

    [ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-fcdcKFnX-1631190399743)(pics/p&g_regression10.png)]

    • ÏßÐԻعé·ÖÎö
    #ɾ³ýȱʧֵ,Êý¾ÝÓÐȱʧ,²»´¦Àí»á±¨´í,ÐèÒª´¦Àíȱʧֵ
    store.dropna(inplace=True)
    
    #»òÕßÌî³äȱʧֵ
    #ȱʧֵ´¦Àí,Ìî³ä0
    store=store.fillna(0)
    #ȱʧֵ´¦Àí,¾ùÖµÌî³ä
    store=store.fillna(store.local_tv.mean())
    store.info()
    '''
    <class 'pandas.core.frame.DataFrame'>
    Int64Index: 985 entries, 845 to 26
    Data columns (total 10 columns):
    revenue             985 non-null float64
    reach               985 non-null int64
    local_tv            985 non-null float64
    online              985 non-null int64
    instore             985 non-null int64
    person              985 non-null int64
    event_cobranding    985 non-null uint8
    event_holiday       985 non-null uint8
    event_non_event     985 non-null uint8
    event_special       985 non-null uint8
    dtypes: float64(2), int64(4), uint8(4)
    memory usage: 57.7 KB
    '''
    
    #É趨×Ô±äÁ¿ºÍÒò±äÁ¿
    y=store['revenue']
    #µÚÒ»´ÎÈý¸ö 
    x=store[['local_tv','person','instore']]
    #µÚ¶þ´ÎËĸö 
    #x=store[['local_tv','person','instore','online']]
    
    #Êý¾Ý±ê×¼»¯´¦Àí
    from sklearn.preprocessing import MinMaxScaler
    scaler = MinMaxScaler()
    x1 = scaler.fit_transform(x)
    
    
    from sklearn.linear_model import LinearRegression
    # ʵÀý»¯api
    model=LinearRegression()
    # ѵÁ·Ä£ÐÍ
    model.fit(x1,y)
    # LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
    
    # ×Ô±äÁ¿ÏµÊý
    model.coef_
    # array([41478.6429907 , 48907.03909284, 26453.89791677])
    
    # Ä£Ð͵Ľؾà
    model.intercept_
    # -17641.46438435701
    # ×îºóµÃµ½xºÍyµÄ¹ØϵΪ:y=41478*local_tv + 48907*person + 26453*instore - 17641
    
    # Ä£Ð͵ÄÆÀ¹À,xΪ'local_tv','person','instore'
    y_predict=model.predict(x)#¼ÆËãyÔ¤²âÖµ
    from sklearn.metrics import mean_squared_error
    mean_squared_error(y,y_predict)
    # 1.9567577917634842e+18
    
    

4 ½á¹û½â¶Á

  • ×¢ÒâÓ¦ÓûعéÄ£ÐÍʱÑо¿×Ô±äÁ¿ÊÇ·ñ²úÉú±ä»¯
    • ÔÚÓ¦ÓûعéÄ£ÐÍ×öÔ¤²âʱ,±ØÐëÑо¿¶ÔÒò±äÁ¿²úÉúÓ°ÏìµÄ×Ô±äÁ¿ÊÇ·ñ²úÉú±ä»¯,Ö÷Òª¿¼²ìÁ½¸ö·½Ãæ:
      • ÊÇ·ñ²úÉúÁËеĶÔÒò±äÁ¿Ó°Ïì¸ü´óµÄ×Ô±äÁ¿
        • ÔÚ½¨Á¢»Ø¹éÄ£ÐÍʱ,ÐèÒª×ۺϿ¼ÂÇ×Ô±äÁ¿µÄÑ¡ÔñÎÊÌâ¡£Èç¹ûÒÅ©ÁËÖØÒªµÄ±äÁ¿,ÄÇôģÐͺܿÉÄÜÎÞ·¨ÕýÈ··´Ó³Êµ¼ÊÇé¿ö,¶øÇÒ²ÎÊý¹À¼ÆÊÇÓÐÆ«µÄ,´ËʱµÄ»Ø¹éÄ£Ðͼ«Æä²»Îȶ¨ÇÒ·½²î½Ï´ó¡£
        • ͬÑùÔÚÓ¦ÓûعéÄ£ÐÍʱ,ÈÔÈ»ÐèÒªÖØÐÂÆÀ¹À¸ÃÎÊÌâÊÇ·ñ·¢Éú¡£ÀýÈç,ÔÚ×öÓû§¶©µ¥½ð¶îÔ¤²âʱÊÇ»ùÓÚÕý³£ÏúÊÛ״̬ϵıäÁ¿ÊµÏÖµÄ;µ«µ±·¢Éú´óÐÍ´ÙÏú»î¶¯ÇÒ´ÙÏú»î¶¯ÒòËØûÓб»ÄÉÈë»Ø¹éÄ£ÐÍÖÐʱ,Ô­À´µÄ»Ø¹éÄ£ÐÍÔòÎÞ·¨ÓÐЧԤ²â¡£
      • Ô­ÓÐ×Ô±äÁ¿ÊÇ·ñÈÔÈ»¿ØÖÆÔÚѵÁ·Ä£ÐÍʱµÄ·¶Î§Ö®ÄÚ¡£
        Èç¹ûÓÐ×Ô±äÁ¿µÄ±ä»¯³¬¹ýѵÁ·Ä£Ð͵ķ¶Î§,ÄÇôԭÀ´µÄ¾­Ñ鹫ʽ¿ÉÄÜÎÞ·¨ÔÚеÄÖµÓò·¶Î§ÏÂÊÊÓÃ,ÕâÖÖÇé¿öÏÂͨ³£ÐèÒªÖØÐÂ×öÑо¿ºÍ½¨Ä£¡£
        • ¼ÙÉèÎÒÃǽ¨Á¢ÁËÒ»¸ö»Ø¹éÄ£ÐÍ,¿ÉÒÔ¹ã¸æͶ·Å·ÑÓÃÔ¤²â¹ã¸æµã»÷ÂÊ,ÔÚѵÁ·»Ø¹éÄ£ÐÍʱµÄ¹ã¸æ·ÑÓÃÔÚ[0,1000]Çø¼äÄÚ,µ«ÔÚ¹ã¸æ·ÑÓó¬¹ý1000(ÀýÈç2000)ʱ,ÔòÎÞ·¨±£Ö¤×îÖÕÔ¤²âЧ¹ûµÄÓÐЧÐÔ¡£
  • »Ø¹éËã·¨°´ÕÕ×Ô±äÁ¿µÄ¸öÊý·ÖΪһԪ»Ø¹éºÍ¶àÔª»Ø¹é,°´ÕÕÓ°ÏìÊÇ·ñÊÇÏßÐÔ·ÖΪÏßÐԻعéºÍ·ÇÏßÐԻع顣ÔÚÃæ¶Ô²»Í¬»Ø¹é·½·¨µÄÑ¡Ôñʱ,×¢Òâ²Î¿¼ÒÔÏÂÒòËØ:
    • ÈëÃŵĿªÊ¼¡ª¡ª¼òµ¥ÏßÐԻع顣Èç¹ûÊÇѧϰΪÖ÷,ÄÇô²»ÐèҪѡÔñ¶àôǿ´óµÄÄ£ÐÍ,»ùÓÚ×îС¶þ³Ë·¨µÄÆÕͨÏßÐԻعé×îºÏÊÊ;ͬʱ,ËüÊʺÏÊý¾Ý¼¯±¾Éí½á¹¹¼òµ¥¡¢·Ö²¼¹æÂÉÓÐÃ÷ÏÔÏßÐÔ¹ØϵµÄ³¡¾°¡£
    • Èç¹û×Ô±äÁ¿ÊýÁ¿ÉÙ»ò¾­¹ý½µÎ¬ºóµÃµ½ÁË¿ÉÒÔʹÓõĶþά±äÁ¿(°üÀ¨Ô¤²â±äÁ¿),ÄÇô¿ÉÒÔÖ±½Óͨ¹ýÉ¢µãͼ·¢ÏÖ×Ô±äÁ¿ºÍÒò±äÁ¿µÄÏ໥¹Øϵ,È»ºóÑ¡Ôñ×î¼Ñ»Ø¹é·½·¨¡£
    • Èç¹û¾­¹ý»ù±¾ÅжϷ¢ÏÖ×Ô±äÁ¿¼äÓнÏÇ¿µÄ¹²ÏßÐÔ¹Øϵ,¿ÉÒÔ¿¼ÂÇÁë»Ø¹é¡£
    • Èç¹ûÔÚ¸ßά¶È±äÁ¿ÏÂ,ʹÓÃÕýÔò»¯»Ø¹é·½·¨Ð§¹û¸üºÃ,ÀýÈçLasso¡¢Ridge
    • Èç¹û×¢ÖØÄ£Ð͵ĿɽâÊÍÐÔ,ÄÇôÈÝÒ×Àí½âµÄÏßÐԻع顢¶àÏîʽ»Ø¹é±È½ÏÊʺϡ£
  È˹¤ÖÇÄÜ ×îÐÂÎÄÕÂ
2022Îâ¶÷´ï»úÆ÷ѧϰ¿Î³Ì¡ª¡ªµÚ¶þ¿Î£¨Éñ¾­Íø
µÚÊ®ÎåÕ ¹æÔòѧϰ
FixMatch: Simplifying Semi-Supervised Le
Êý¾ÝÍÚ¾òJava¡ª¡ªKmeansËã·¨µÄʵÏÖ
´óÄÔƤ²ãµÄ·Ö¸î·½·¨
¡¾·­Òë¡¿GPT-3ÊÇÈçºÎ¹¤×÷µÄ
ÂÛÎıʼÇ:TEACHTEXT: CrossModal Generaliz
python´ÓÁãѧ£¨Áù£©
Ïê½âPython 3.x µ¼Èë(import)
¡¾´ð¶ÁÕßÎÊ27¡¿backtrader²»Ö§³Ö×îа汾µÄ
ÉÏһƪÎÄÕ      ÏÂһƪÎÄÕ      ²é¿´ËùÓÐÎÄÕÂ
¼Ó:2021-09-10 10:50:39  ¸ü:2021-09-10 10:52:08 
 
¿ª·¢: C++֪ʶ¿â Java֪ʶ¿â JavaScript Python PHP֪ʶ¿â È˹¤ÖÇÄÜ Çø¿éÁ´ ´óÊý¾Ý Òƶ¯¿ª·¢ ǶÈëʽ ¿ª·¢¹¤¾ß Êý¾Ý½á¹¹ÓëËã·¨ ¿ª·¢²âÊÔ ÓÎÏ·¿ª·¢ ÍøÂçЭÒé ϵͳÔËά
½Ì³Ì: HTML½Ì³Ì CSS½Ì³Ì JavaScript½Ì³Ì GoÓïÑÔ½Ì³Ì JQuery½Ì³Ì VUE½Ì³Ì VUE3½Ì³Ì Bootstrap½Ì³Ì SQLÊý¾Ý¿â½Ì³Ì CÓïÑÔ½Ì³Ì C++½Ì³Ì Java½Ì³Ì Python½Ì³Ì Python3½Ì³Ì C#½Ì³Ì
ÊýÂë: µçÄÔ ±Ê¼Ç±¾ ÏÔ¿¨ ÏÔʾÆ÷ ¹Ì̬ӲÅÌ Ó²ÅÌ ¶ú»ú ÊÖ»ú iphone vivo oppo СÃ× »ªÎª µ¥·´ ×°»ú ͼÀ­¶¡

360ͼÊé¹Ý ¹ºÎï Èý·á¿Æ¼¼ ÔĶÁÍø ÈÕÀú ÍòÄêÀú 2025Äê1ÈÕÀú -2025/1/11 19:56:48-

ͼƬ×Ô¶¯²¥·ÅÆ÷
¡ýͼƬ×Ô¶¯²¥·ÅÆ÷¡ý
TxTС˵ÔĶÁÆ÷
¡ýÓïÒôÔĶÁ,С˵ÏÂÔØ,¹ÅµäÎÄѧ¡ý
Ò»¼üÇå³ýÀ¬»ø
¡ýÇáÇáÒ»µã,Çå³ýϵͳÀ¬»ø¡ý
ͼƬÅúÁ¿ÏÂÔØÆ÷
¡ýÅúÁ¿ÏÂÔØͼƬ,ÃÀŮͼ¿â¡ý
  ÍøÕ¾ÁªÏµ: qq:121756557 email:121756557@qq.com  ITÊýÂë