2.1 ÏßÐԻعé¼ò½é
ѧϰĿ±ê
- Á˽âÏßÐԻعéµÄÓ¦Óó¡¾°
- ÖªµÀÏßÐԻعéµÄ¶¨Òå
1 ÏßÐԻعéÓ¦Óó¡¾°
-
·¿¼ÛÔ¤²â -
ÏúÊÛ¶îÔ¤²â -
´û¿î¶î¶ÈÔ¤²â
ÏßÐÔ¹Øϵ¾ÙÀý:
2 ʲôÊÇÏßÐԻعé
2.1 ¶¨ÒåÓ빫ʽ
ÏßÐԻعé(Linear regression)ÊÇÀûÓûع鷽³Ì(º¯Êý)¶ÔÒ»¸ö»ò¶à¸ö×Ô±äÁ¿(ÌØÕ÷Öµ)ºÍÒò±äÁ¿(Ä¿±êÖµ)Ö®¼ä¹Øϵ½øÐн¨Ä£µÄÒ»ÖÖ·ÖÎö·½Ê½¡£
-
Ìصã:Ö»ÓÐÒ»¸ö×Ô±äÁ¿µÄÇé¿ö³ÆΪµ¥±äÁ¿»Ø¹é,¶àÓÚÒ»¸ö×Ô±äÁ¿Çé¿öµÄ½Ð×ö¶àÔª»Ø¹é¡£ ͨÓù«Ê½
h
(
w
)
=
w
1
x
1
+
w
2
x
2
+
w
3
x
3
+
.
.
.
+
b
=
w
T
x
+
b
h(w)=w{_1}x{_1}+w{_2}x{_2}+w{_3}x{_3}+...+b=w^Tx+b
h(w)=w1?x1?+w2?x2?+w3?x3?+...+b=wTx+b, ÆäÖÐ
w
w
w,
x
x
x¿ÉÒÔÀí½âΪ¾ØÕó:
w
=
(
b
w
1
w
2
?
)
w= \begin{pmatrix} b \\ w{_1} \\ w{_2} \\ \vdots \end{pmatrix}
w=??????bw1?w2?????????,
x
=
(
1
x
1
x
2
?
)
x= \begin{pmatrix} 1 \\ x{_1} \\ x{_2}\\\vdots \end{pmatrix}
x=??????1x1?x2????????? -
ÏßÐԻعéÓþØÕó±íʾ¾ÙÀý
{
1
¡Á
x
1
+
x
2
=
2
0
¡Á
x
1
+
x
2
=
2
2
¡Á
x
1
+
x
2
=
3
\begin{cases}1 \times x{_1} + x{_2} = 2 \\ 0 \times x{_1} + x{_2} = 2 \\ 2 \times x{_1} + x{_2} = 3 \end{cases}
??????1¡Áx1?+x2?=20¡Áx1?+x2?=22¡Áx1?+x2?=3?
? д³É¾ØÕóÐÎʽ: KaTeX parse error: No such environment: split at position 8: \begin{?s?p?l?i?t?}? &\begin{bmat¡ ? ´ÓÁеĽǶȿ´: KaTeX parse error: No such environment: split at position 8: \begin{?s?p?l?i?t?}? &\begin{bmatri¡
?
ÄÇôÔõôÀí½âÄØ?ÎÒÃÇÀ´¿´¼¸¸öÀý×Ó
- ÆÚÄ©³É¼¨:0.7¡Á¿¼ÊԳɼ¨+0.3¡Áƽʱ³É¼¨
- ·¿×Ó¼Û¸ñ = 0.02¡ÁÖÐÐÄÇøÓòµÄ¾àÀë + 0.04¡Á³ÇÊÐÒ»Ñõ»¯µªÅ¨¶È + (-0.12¡Á×Ôס·¿Æ½¾ù·¿¼Û) + 0.254¡Á³ÇÕò·¸×ïÂÊ
ÉÏÃæÁ½¸öÀý×Ó,ÎÒÃÇ¿´µ½ÌØÕ÷ÖµÓëÄ¿±êÖµÖ®¼ä½¨Á¢ÁËÒ»¸ö¹Øϵ,Õâ¸ö¹Øϵ¿ÉÒÔÀí½âΪÏßÐÔÄ£ÐÍ¡£
2.2 ÏßÐԻعéµÄÌØÕ÷ÓëÄ¿±êµÄ¹Øϵ·ÖÎö
ÏßÐԻع鵱ÖÐÖ÷ÒªÓÐÁ½ÖÖÄ£ÐÍ,**Ò»ÖÖÊÇÏßÐÔ¹Øϵ,ÁíÒ»ÖÖÊÇ·ÇÏßÐÔ¹Øϵ¡£**ÔÚÕâÀïÎÒÃÇÖ»Äܻһ¸öƽÃæ¸üºÃÈ¥Àí½â,ËùÒÔ¶¼Óõ¥¸öÌØÕ÷»òÁ½¸öÌØÕ÷¾ÙÀý×Ó¡£
-
ÏßÐÔ¹Øϵ
¸ü¸ßά¶ÈµÄÎÒÃDz»ÓÃ×Ô¼ºÈ¥Ïë,¼ÇסÕâÖÖ¹Øϵ¼´¿É
-
·ÇÏßÐÔ¹Øϵ
×¢ÊÍ:Ϊʲô»áÕâÑùµÄ¹ØϵÄØ?ÔÒòÊÇʲô?
Èç¹ûÊÇ·ÇÏßÐÔ¹Øϵ,ÄÇô»Ø¹é·½³Ì¿ÉÒÔÀí½âΪ:
w
1
x
1
+
w
2
x
2
2
+
w
3
x
3
2
w_1x_1+w_2x_2^2+w_3x_3^2
w1?x1?+w2?x22?+w3?x32?
С½á
- ÏßÐԻعéµÄ¶¨Ò塾Á˽⡿
- ÀûÓûع鷽³Ì(º¯Êý)¶ÔÒ»¸ö»ò¶à¸ö×Ô±äÁ¿(ÌØÕ÷Öµ)ºÍÒò±äÁ¿(Ä¿±êÖµ)Ö®¼ä¹Øϵ½øÐн¨Ä£µÄÒ»ÖÖ·ÖÎö·½Ê½
- ÏßÐԻعéµÄ·ÖÀࡾ֪µÀ¡¿
2.2 ÏßÐԻعéapi³õ²½Ê¹ÓÃ
ѧϰĿ±ê
- ÖªµÀÏßÐԻعéapiµÄ¼òµ¥Ê¹ÓÃ
1 ÏßÐԻعéAPI
- sklearn.linear_model.LinearRegression()
- LinearRegression.coef_:»Ø¹éϵÊý
- LinearRegression.intercept_: ½Ø¾à
2 ¾ÙÀý
2.1 ²½Öè·ÖÎö
- 1.»ñÈ¡Êý¾Ý¼¯
- 2.Êý¾Ý»ù±¾´¦Àí(¸Ã°¸ÀýÖÐÊ¡ÂÔ)
- 3.ÌØÕ÷¹¤³Ì(¸Ã°¸ÀýÖÐÊ¡ÂÔ)
- 4.»úÆ÷ѧϰ
- 5.Ä£ÐÍÆÀ¹À(¸Ã°¸ÀýÖÐÊ¡ÂÔ)
2.2 ´úÂë¹ý³Ì
from sklearn.linear_model import LinearRegression
x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]
estimator = LinearRegression()
estimator.fit(x,y)
estimator.coef_
estimator.intercept_
estimator.predict([[100, 80]])
С½á
- sklearn.linear_model.LinearRegression()
- LinearRegression.coef_:»Ø¹éϵÊý
- LinearRegression.intercept_: ½Ø¾à
2.3 Êýѧ:Çóµ¼
ѧϰĿ±ê
- ÖªµÀ³£¼ûµÄÇóµ¼·½·¨
- ÖªµÀµ¼ÊýµÄËÄÔòÔËËã
1 µ¼ÊýµÄ¸ÅÄî»Ø¹Ë
-
µ¼Êý(Derivative),Ò²½Ðµ¼º¯ÊýÖµ¡£ÓÖÃû΢ÉÌ,ÊÇ΢»ý·ÖÖеÄÖØÒª»ù´¡¸ÅÄî¡£
- µ±º¯Êýy=f(x)µÄ×Ô±äÁ¿xÔÚÒ»µãx0ÉϲúÉúÒ»¸öÔöÁ¿¦¤xʱ,º¯ÊýÊä³öÖµµÄÔöÁ¿¦¤yÓë×Ô±äÁ¿ÔöÁ¿¦¤xµÄ±ÈÖµÔÚ¦¤xÇ÷ÓÚ0ʱµÄ¼«ÏÞaÈç¹û´æÔÚ,a¼´ÎªÔÚx0´¦µÄµ¼Êý,¼Ç×÷f¡¯(x0)»òdf(x0)/dx¡£
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-9LNIMY0r-1631190399726)(./images/µ¼Êý.jpeg)] -
µ¼ÊýÊǺ¯ÊýµÄ¾Ö²¿ÐÔÖÊ¡£Ò»¸öº¯ÊýÔÚijһµãµÄµ¼ÊýÃèÊöÁËÕâ¸öº¯ÊýÔÚÕâÒ»µã¸½½üµÄ±ä»¯ÂÊ¡£
- Èç¹ûº¯ÊýµÄ×Ô±äÁ¿ºÍÈ¡Öµ¶¼ÊÇʵÊýµÄ»°,º¯ÊýÔÚijһµãµÄµ¼Êý¾ÍÊǸú¯ÊýËù´ú±íµÄÇúÏßÔÚÕâÒ»µãÉϵÄÇÐÏßбÂÊ
- µ¼ÊýµÄ±¾ÖÊÊÇͨ¹ý¼«Ï޵ĸÅÄî¶Ôº¯Êý½øÐоֲ¿µÄÏßÐԱƽü¡£ÀýÈçÔÚÔ˶¯Ñ§ÖÐ,ÎïÌåµÄλÒƶÔÓÚʱ¼äµÄµ¼Êý¾ÍÊÇÎïÌåµÄ˲ʱËÙ¶È
-
²»ÊÇËùÓеĺ¯Êý¶¼Óе¼Êý,Ò»¸öº¯ÊýÒ²²»Ò»¶¨ÔÚËùÓеĵãÉ϶¼Óе¼Êý¡£
- Èôijº¯ÊýÔÚijһµãµ¼Êý´æÔÚ,Ôò³ÆÆäÔÚÕâÒ»µã¿Éµ¼,·ñÔò³ÆΪ²»¿Éµ¼
- ¿Éµ¼µÄº¯ÊýÒ»¶¨Á¬Ðø;²»Á¬ÐøµÄº¯ÊýÒ»¶¨²»¿Éµ¼
-
¶ÔÓڿɵ¼µÄº¯Êýf(x),x?f¡¯(x)Ò²ÊÇÒ»¸öº¯Êý,³Æ×÷f(x)µÄµ¼º¯Êý(¼ò³Æµ¼Êý)¡£Ñ°ÕÒÒÑÖªµÄº¯ÊýÔÚijµãµÄµ¼Êý»òÆäµ¼º¯ÊýµÄ¹ý³Ì³ÆΪÇóµ¼
- ʵÖÊÉÏ,Çóµ¼¾ÍÊÇÒ»¸öÇó¼«Ï޵Ĺý³Ì,µ¼ÊýµÄËÄÔòÔËËã·¨ÔòÒ²À´Ô´ÓÚ¼«ÏÞµÄËÄÔòÔËËã·¨Ôò
- ÒÑÖªµ¼º¯ÊýÒ²¿ÉÒÔµ¹¹ýÀ´ÇóÔÀ´µÄº¯Êý
2 ³£¼ûº¯ÊýµÄµ¼Êý
¹«Ê½ | Àý×Ó |
---|
(
C
)
¡ä
=
0
(C)^\prime=0
(C)¡ä=0 |
(
5
)
¡ä
=
0
\left(5\right)^\prime=0
(5)¡ä=0
(
10
)
¡ä
=
0
\left(10\right)^\prime=0
(10)¡ä=0 |
(
x
¦Á
)
¡ä
=
¦Á
x
¦Á
?
1
\left(x^\alpha\right)^\prime=\alpha x^{\alpha-1}
(x¦Á)¡ä=¦Áx¦Á?1 |
(
x
3
)
¡ä
=
3
x
2
\left(x^3\right)^\prime=3 x^{2}
(x3)¡ä=3x2
(
x
5
)
¡ä
=
5
x
4
\left(x^5\right)^\prime=5 x^{4}
(x5)¡ä=5x4 |
(
a
x
)
¡ä
=
a
x
ln
?
a
\left(a^x\right)^\prime=a^{x}\ln{a}
(ax)¡ä=axlna |
(
2
x
)
¡ä
=
2
x
ln
?
2
\left(2^x\right)^\prime=2^x\ln{2}
(2x)¡ä=2xln2
(
7
x
)
¡ä
=
7
x
ln
?
7
\left(7^x\right)^\prime=7^x\ln{7}
(7x)¡ä=7xln7 |
(
e
x
)
¡ä
=
e
x
\left(e^x\right)^\prime=e^{x}
(ex)¡ä=ex |
(
e
x
)
¡ä
=
e
x
\left(e^x\right)^\prime=e^{x}
(ex)¡ä=ex |
(
log
?
a
x
)
¡ä
=
1
x
ln
?
a
\left(\log{_a}x\right)^\prime=\frac{1}{x\ln{a}}
(loga?x)¡ä=xlna1? |
(
log
?
10
x
)
¡ä
=
1
x
ln
?
10
\left(\log{_{10}}x\right)^\prime=\frac{1}{x\ln{10}}
(log10?x)¡ä=xln101?
(
log
?
6
x
)
¡ä
=
1
x
ln
?
6
\left(\log{_{6}}x\right)^\prime=\frac{1}{x\ln{6}}
(log6?x)¡ä=xln61? |
(
ln
?
x
)
¡ä
=
1
x
\left(\ln{x}\right)^\prime=\frac{1}{x}
(lnx)¡ä=x1? |
(
ln
?
x
)
¡ä
=
1
x
\left(\ln{x}\right)^\prime=\frac{1}{x}
(lnx)¡ä=x1? |
(
sin
?
x
)
¡ä
=
cos
?
x
\left(\sin{x}\right)^\prime=\cos{x}
(sinx)¡ä=cosx |
(
sin
?
x
)
¡ä
=
cos
?
x
\left(\sin{x}\right)^\prime=\cos{x}
(sinx)¡ä=cosx |
(
cos
?
x
)
¡ä
=
?
sin
?
x
\left(\cos{x}\right)^\prime=-\sin{x}
(cosx)¡ä=?sinx |
(
cos
?
x
)
¡ä
=
?
sin
?
x
\left(\cos{x}\right)^\prime=-\sin{x}
(cosx)¡ä=?sinx |
3 µ¼ÊýµÄËÄÔòÔËËã
¹«Ê½ | Àý×Ó |
---|
[
u
(
x
)
¡À
v
(
x
)
]
¡ä
=
u
¡ä
(
x
)
¡À
v
¡ä
(
x
)
\left[u(x)\pm v(x)\right]^\prime=u^\prime(x) \pm v^\prime(x)
[u(x)¡Àv(x)]¡ä=u¡ä(x)¡Àv¡ä(x) |
(
e
x
+
4
ln
?
x
)
¡ä
=
(
e
x
)
¡ä
+
(
4
ln
?
x
)
¡ä
=
e
x
+
4
x
(e^x+4\ln{x})^\prime=(e^x)^\prime+(4\ln{x})^\prime=e^x+\frac{4}{x}
(ex+4lnx)¡ä=(ex)¡ä+(4lnx)¡ä=ex+x4? |
[
u
(
x
)
?
v
(
x
)
]
¡ä
=
u
¡ä
(
x
)
?
v
(
x
)
+
u
(
x
)
?
v
¡ä
(
x
)
\left[u(x)\cdot v(x)\right]^\prime=u^\prime(x) \cdot v(x) + u(x) \cdot v^\prime(x)
[u(x)?v(x)]¡ä=u¡ä(x)?v(x)+u(x)?v¡ä(x) |
(
sin
?
x
?
ln
?
x
)
¡ä
=
cos
?
x
?
ln
?
x
+
sin
?
x
?
1
x
(\sin{x}\cdot\ln{x})^\prime=\cos{x}\cdot\ln{x}+\sin{x}\cdot\frac{1}{x}
(sinx?lnx)¡ä=cosx?lnx+sinx?x1? |
[
u
(
x
)
v
(
x
)
]
¡ä
=
u
¡ä
(
x
)
?
v
(
x
)
?
u
(
x
)
?
v
¡ä
(
x
)
v
2
(
x
)
\left[\frac{u(x)}{v(x)}\right]^\prime=\frac{u^\prime(x) \cdot v(x) - u(x) \cdot v^\prime(x)}{v^2(x)}
[v(x)u(x)?]¡ä=v2(x)u¡ä(x)?v(x)?u(x)?v¡ä(x)? |
(
e
x
cos
?
x
)
¡ä
=
e
x
?
cos
?
x
?
e
x
?
(
?
sin
?
x
)
c
o
s
2
(
x
)
\left(\frac{e^x}{\cos{x}}\right)^\prime=\frac{e^x\cdot\cos{x}-e^x\cdot(-\sin{x})}{cos^2(x)}
(cosxex?)¡ä=cos2(x)ex?cosx?ex?(?sinx)? |
{
g
[
h
(
x
)
]
}
¡ä
=
g
¡ä
(
h
)
?
h
¡ä
(
x
)
\{g[h(x)]\}^\prime=g^\prime(h)*h^\prime(x)
{g[h(x)]}¡ä=g¡ä(h)?h¡ä(x) |
(
sin
?
2
x
)
¡ä
=
cos
?
2
x
?
(
2
x
)
¡ä
=
2
cos
?
(
2
x
)
(\sin{2x})^\prime=\cos{2x}\cdot(2x)^\prime=2\cos(2x)
(sin2x)¡ä=cos2x?(2x)¡ä=2cos(2x) |
4 Á·Ï°
-
y
=
x
3
?
2
x
2
+
s
i
n
x
y = x^3-2x^2+sinx
y=x3?2x2+sinx,Çó
f
¡ä
(
x
)
f^\prime(x)
f¡ä(x)
-
(
e
x
+
4
l
n
x
)
¡ä
(e^x+4lnx)^\prime
(ex+4lnx)¡ä
-
(
s
i
n
x
?
l
n
x
)
¡ä
(sinx*lnx)^\prime
(sinx?lnx)¡ä
-
(
e
x
c
o
s
x
)
¡ä
(\frac{e^x}{cosx})^\prime
(cosxex?)¡ä
-
y
=
sin
?
2
x
y=\sin2x
y=sin2x, Çó
d
y
d
x
\frac{dy}{dx}
dxdy?
-
(
e
2
x
)
¡ä
(e^{2x})^\prime
(e2x)¡ä
´ð°¸:
-
y
¡ä
=
(
x
3
?
2
x
2
+
sin
?
x
)
¡ä
=
(
x
3
)
¡ä
?
(
2
x
2
)
¡ä
+
(
sin
?
x
)
¡ä
=
3
x
2
?
4
x
+
cos
?
x
y^\prime=(x^3-2x^2+\sin{x})^\prime=(x^3)^\prime-(2x^2)^\prime+(\sin{x})^\prime = 3x^2-4x+\cos{x}
y¡ä=(x3?2x2+sinx)¡ä=(x3)¡ä?(2x2)¡ä+(sinx)¡ä=3x2?4x+cosx
-
(
e
x
+
4
l
n
x
)
¡ä
=
(
e
x
)
¡ä
+
(
4
ln
?
x
)
¡ä
=
e
x
+
4
x
(e^x+4lnx)^\prime=(e^x)^\prime+(4\ln{x})^\prime=e^x+\frac{4}{x}
(ex+4lnx)¡ä=(ex)¡ä+(4lnx)¡ä=ex+x4?
-
(
s
i
n
x
?
l
n
x
)
¡ä
=
(
sin
?
x
)
¡ä
?
ln
?
x
+
sin
?
x
?
(
ln
?
x
)
¡ä
=
cos
?
x
?
ln
?
x
+
sin
?
x
?
1
x
(sinx*lnx)^\prime=(\sin{x})^\prime\cdot\ln{x}+\sin{x}\cdot(\ln{x})^\prime=\cos{x}\cdot\ln{x}+\sin{x}\cdot\frac{1}{x}
(sinx?lnx)¡ä=(sinx)¡ä?lnx+sinx?(lnx)¡ä=cosx?lnx+sinx?x1?
-
(
e
x
cos
?
x
)
¡ä
=
(
e
x
)
¡ä
?
cos
?
x
?
e
x
?
(
cos
?
x
)
¡ä
cos
?
2
x
=
e
x
?
cos
?
x
?
e
x
?
(
?
sin
?
x
)
cos
?
2
(
x
)
\left(\frac{e^x}{\cos{x}}\right)^\prime=\frac{(e^x)^\prime\cdot\cos{x}-e^x\cdot(\cos{x})\prime}{\cos^2{x}}=\frac{e^x\cdot\cos{x}-e^x\cdot(-\sin{x})}{\cos^2(x)}
(cosxex?)¡ä=cos2x(ex)¡ä?cosx?ex?(cosx)¡ä?=cos2(x)ex?cosx?ex?(?sinx)?
-
(
sin
?
2
x
)
¡ä
=
cos
?
2
x
?
(
2
x
)
¡ä
=
2
cos
?
(
2
x
)
(\sin{2x})^\prime=\cos{2x}\cdot(2x)^\prime=2\cos(2x)
(sin2x)¡ä=cos2x?(2x)¡ä=2cos(2x)
-
(
e
2
x
)
¡ä
=
e
2
x
?
(
2
x
)
¡ä
=
2
e
2
x
(e^{2x})^\prime=e^{2x}\cdot(2x)^\prime=2e^{2x}
(e2x)¡ä=e2x?(2x)¡ä=2e2x
С½á
- ³£¼ûº¯ÊýµÄÇóµ¼·½Ê½ºÍµ¼ÊýµÄËÄÔòÔËËã
2.4 ÏßÐԻعéµÄËðʧºÍÓÅ»¯
ѧϰĿ±ê
- ÖªµÀÏßÐԻعéÖÐËðʧº¯Êý
- ÖªµÀʹÓÃÕý¹æ·½³Ì¶ÔËðʧº¯ÊýÓÅ»¯µÄ¹ý³Ì
- ÖªµÀʹÓÃÌݶÈϽµ·¨¶ÔËðʧº¯ÊýÓÅ»¯µÄ¹ý³Ì
ÈçºÎÈ·¶¨»Ø¹é·½³Ì
- Ë㷨ѵÁ·³öÀ´µÄ»Ø¹é·½³Ì, ÊÇ·ñ»áÂú×ãËùÓеÄÑù±¾?
- ÔÊÐíÎó²î´æÔÚ
- Ä¿±ê,»Ø¹é·½³ÌµÄ½á¹ûÓëʵ¼ÊÖµµÄÎó²î×îС
- ¼ÈÈ»´æÔÚÎó²î,ÈçºÎºâÁ¿Îó²î?
1 Ëðʧº¯Êý
×ÜËðʧ¶¨ÒåΪ:
J
(
w
)
=
(
h
(
x
1
)
?
y
1
)
2
+
(
h
(
x
2
)
?
y
2
)
2
+
.
.
.
+
(
h
(
x
m
)
?
y
m
)
2
=
¡Æ
i
=
1
m
(
h
(
x
i
)
?
y
i
)
2
\begin{aligned}J(w)&=(h(x_{1})-y_{1})^2+(h(x_{2})-y_{2})^2+...+(h(x_{m})-y_{m})^2 \\ &=\sum_{i=1}^m(h(x_{i})-y_{i})^2\end{aligned}
J(w)?=(h(x1?)?y1?)2+(h(x2?)?y2?)2+...+(h(xm?)?ym?)2=i=1¡Æm?(h(xi?)?yi?)2?
-
y
i
y_{i}
yi?ΪµÚ
i
i
i¸öѵÁ·Ñù±¾µÄÕæʵֵ
-
h
(
x
i
)
h(x_{i})
h(xi?)ΪµÚ
i
i
i¸öѵÁ·Ñù±¾ÌØÕ÷Öµ×éºÏÔ¤²âº¯Êý,Ò²³ÆΪĿ±êº¯Êý
- Ä¿±êº¯Êý(objective function)ÊÇÖ¸Ëù¹ØÐĵÄÄ¿±ê(ijһ±äÁ¿)ÓëÏà¹ØµÄÒòËØ(ijЩ±äÁ¿)µÄº¯Êý¹Øϵ¡£¼òµ¥µÄ˵,¾ÍÊÇÄãÇó½âºóËùµÃ³öµÄÄǸöº¯Êý¡£
- ÓÖ³Æ×îС¶þ³Ë·¨
ÈçºÎÈ¥¼õÉÙÕâ¸öËðʧ,ʹÎÒÃÇÔ¤²âµÄ¸ü¼Ó׼ȷЩ?¼ÈÈ»´æÔÚÁËÕâ¸öËðʧ,ÎÒÃÇһֱ˵»úÆ÷ѧϰÓÐ×Ô¶¯Ñ§Ï°µÄ¹¦ÄÜ,ÔÚÏßÐԻعéÕâÀï¸üÊÇÄܹ»ÌåÏÖ¡£ÕâÀï¿ÉÒÔͨ¹ýһЩÓÅ»¯·½·¨È¥ÓÅ»¯(ÆäʵÊÇÊýѧµ±ÖеÄÇóµ¼¹¦ÄÜ)»Ø¹éµÄ×ÜËðʧ!!!
2 ÓÅ»¯Ëã·¨
ÈçºÎÈ¥ÇóÄ£Ð͵±ÖеÄW,ʹµÃËðʧ×îС?(Ä¿µÄÊÇÕÒµ½×îСËðʧ¶ÔÓ¦µÄWÖµ)
- ÏßÐԻع龳£Ê¹ÓõÄÁ½ÖÖÓÅ»¯Ëã·¨
2.1 Õý¹æ·½³Ì
2.1.1 ʲôÊÇÕý¹æ·½³Ì
w
=
(
X
T
X
)
?
1
X
T
y
w=(X^TX)^{-1}X^Ty
w=(XTX)?1XTy
Àí½â:XΪÌØÕ÷Öµ¾ØÕó,yΪĿ±êÖµ¾ØÕó¡£Ö±½ÓÇóµ½×îºÃµÄ½á¹û
ȱµã:µ±ÌØÕ÷¹ý¶à¹ý¸´ÔÓʱ,Çó½âËÙ¶ÈÌ«Âý²¢Çҵò»µ½½á¹û
2.1.2 Õý¹æ·½³ÌÇó½â¾ÙÀý
ÒÔϱíʾÊý¾ÝΪÀý:
¼´:
ÔËÓÃÕý¹æ·½³Ì·½·¨Çó½â²ÎÊý:
2.2 ÌݶÈϽµ(Gradient Descent)
2.2.1 ʲôÊÇÌݶÈϽµ
ÌݶÈϽµ·¨µÄ»ù±¾Ë¼Ïë¿ÉÒÔÀà±ÈΪһ¸öÏÂɽµÄ¹ý³Ì¡£
¼ÙÉèÕâÑùÒ»¸ö³¡¾°:
Ò»¸öÈ˱»À§ÔÚɽÉÏ,ÐèÒª´ÓɽÉÏÏÂÀ´(i.e. ÕÒµ½É½µÄ×îµÍµã,Ò²¾ÍÊÇɽ¹È)¡£µ«´ËʱɽÉϵÄŨÎíºÜ´ó,µ¼Ö¿ÉÊӶȺܵ͡£
Òò´Ë,ÏÂɽµÄ·¾¶¾ÍÎÞ·¨È·¶¨,Ëû±ØÐëÀûÓÃ×Ô¼ºÖÜΧµÄÐÅϢȥÕÒµ½ÏÂɽµÄ·¾¶¡£Õâ¸öʱºò,Ëû¾Í¿ÉÒÔÀûÓÃÌݶÈϽµËã·¨À´°ïÖú×Ô¼ºÏÂɽ¡£
¾ßÌåÀ´Ëµ¾ÍÊÇ,ÒÔËûµ±Ç°µÄËù´¦µÄλÖÃΪ»ù×¼,Ñ°ÕÒÕâ¸öλÖÃ×Ç͵ĵط½,È»ºó³¯×ÅɽµÄ¸ß¶ÈϽµµÄµØ·½×ß,(ͬÀí,Èç¹ûÎÒÃǵÄÄ¿±êÊÇÉÏɽ,Ò²¾ÍÊÇÅÀµ½É½¶¥,ÄÇô´ËʱӦ¸ÃÊdz¯×Å×Ç͵ķ½ÏòÍùÉÏ×ß)¡£È»ºóÿ×ßÒ»¶Î¾àÀë,¶¼·´¸´²ÉÓÃͬһ¸ö·½·¨,×îºó¾ÍÄܳɹ¦µÄµÖ´ïɽ¹È¡£
ÌݶÈϽµµÄ»ù±¾¹ý³Ì¾ÍºÍÏÂɽµÄ³¡¾°ºÜÀàËÆ¡£
Ê×ÏÈ,ÎÒÃÇÓÐÒ»¸ö¿É΢·ÖµÄº¯Êý¡£Õâ¸öº¯Êý¾Í´ú±í×ÅÒ»×ùɽ¡£
ÎÒÃǵÄÄ¿±ê¾ÍÊÇÕÒµ½Õâ¸öº¯ÊýµÄ×îСֵ,Ò²¾ÍÊÇɽµ×¡£
¸ù¾Ý֮ǰµÄ³¡¾°¼ÙÉè,×î¿ìµÄÏÂɽµÄ·½Ê½¾ÍÊÇÕÒµ½µ±Ç°Î»ÖÃ×Ç͵ķ½Ïò,È»ºóÑØ×Å´Ë·½ÏòÏòÏÂ×ß,¶ÔÓ¦µ½º¯ÊýÖÐ,¾ÍÊÇÕÒµ½¸ø¶¨µãµÄÌÝ¶È ,È»ºó³¯×ÅÌݶÈÏà·´µÄ·½Ïò,¾ÍÄÜÈú¯ÊýֵϽµµÄ×î¿ì!ÒòΪÌݶȵķ½Ïò¾ÍÊǺ¯ÊýÖµ±ä»¯×î¿ìµÄ·½Ïò¡£ ËùÒÔ,ÎÒÃÇÖظ´ÀûÓÃÕâ¸ö·½·¨,·´¸´ÇóÈ¡ÌݶÈ,×îºó¾ÍÄܵ½´ï¾Ö²¿µÄ×îСֵ,Õâ¾ÍÀàËÆÓÚÎÒÃÇÏÂɽµÄ¹ý³Ì¡£¶øÇóÈ¡ÌݶȾÍÈ·¶¨ÁË×Ç͵ķ½Ïò,Ò²¾ÍÊdz¡¾°ÖвâÁ¿·½ÏòµÄÊֶΡ£
2.2.2 ÌݶȵĸÅÄî
ÌݶÈÊÇ΢»ý·ÖÖÐÒ»¸öºÜÖØÒªµÄ¸ÅÄî
- ÔÚµ¥±äÁ¿µÄº¯ÊýÖÐ,ÌݶÈÆäʵ¾ÍÊǺ¯ÊýµÄ΢·Ö,´ú±íן¯ÊýÔÚij¸ö¸ø¶¨µãµÄÇÐÏßµÄбÂÊ;
- ÔÚ¶à±äÁ¿º¯ÊýÖÐ,ÌݶÈÊÇÒ»¸öÏòÁ¿,ÏòÁ¿Óз½Ïò,Ìݶȵķ½Ïò¾ÍÖ¸³öÁ˺¯ÊýÔÚ¸ø¶¨µãµÄÉÏÉý×î¿ìµÄ·½Ïò;
- ÔÚ΢»ý·ÖÀïÃæ,¶Ô¶àÔªº¯ÊýµÄ²ÎÊýÇó?Æ«µ¼Êý,°ÑÇóµÃµÄ¸÷¸ö²ÎÊýµÄÆ«µ¼ÊýÒÔÏòÁ¿µÄÐÎʽд³öÀ´,¾ÍÊÇÌݶȡ£
ÕâÒ²¾Í˵Ã÷ÁËΪʲôÎÒÃÇÐèҪǧ·½°Ù¼ÆµÄÇóÈ¡ÌݶÈ!ÎÒÃÇÐèÒªµ½´ïɽµ×,¾ÍÐèÒªÔÚÿһ²½¹Û²âµ½´Ëʱ×Ç͵ĵط½,ÌݶȾÍÇ¡ÇɸæËßÁËÎÒÃÇÕâ¸ö·½Ïò¡£Ìݶȵķ½ÏòÊǺ¯ÊýÔÚ¸ø¶¨µãÉÏÉý×î¿ìµÄ·½Ïò,ÄÇôÌݶȵķ´·½Ïò¾ÍÊǺ¯ÊýÔÚ¸ø¶¨µãϽµ×î¿ìµÄ·½Ïò,ÕâÕýÊÇÎÒÃÇËùÐèÒªµÄ¡£ËùÒÔÎÒÃÇÖ»ÒªÑØ×ÅÌݶȵķ´·½ÏòÒ»Ö±×ß,¾ÍÄÜ×ßµ½¾Ö²¿µÄ×îµÍµã!
2.2.3 ÌݶÈϽµ¾ÙÀý
ÎÒÃǼÙÉèÓÐÒ»¸öµ¥±äÁ¿µÄº¯Êý :
J
(
¦È
)
=
¦È
2
J(\theta) = \theta^2
J(¦È)=¦È2
º¯ÊýµÄ΢·Ö:
J
¡ä
(
¦È
)
=
2
¦È
J^\prime(\theta) = 2\theta
J¡ä(¦È)=2¦È
³õʼ»¯,ÆðµãΪ(ÒÑÖªµÄÆðʼλÖÃ):
¦È
0
=
1
\theta^0 = 1
¦È0=1
ѧϰÂÊ(²½³¤):
¦Á
=
0.4
\alpha = 0.4
¦Á=0.4
ÎÒÃÇ¿ªÊ¼½øÐÐÌݶÈϽµµÄµü´ú¼ÆËã¹ý³Ì: KaTeX parse error: No such environment: eqnarray at position 15: \large \begin{?e?q?n?a?r?r?a?y?}? \theta^0 &=& 1¡
Èçͼ,¾¹ýËĴεÄÔËËã,Ò²¾ÍÊÇ×ßÁËËIJ½,»ù±¾¾ÍµÖ´ïÁ˺¯ÊýµÄ×îµÍµã,Ò²¾ÍÊÇɽµ×
ÎÒÃǼÙÉèÓÐÒ»¸öÄ¿±êº¯Êý :
J
(
¦È
)
=
¦È
1
2
+
¦È
2
2
J(\theta) = \theta_{1}^{2} + \theta_{2}^{2}
J(¦È)=¦È12?+¦È22?
ÏÖÔÚҪͨ¹ýÌݶÈϽµ·¨¼ÆËãÕâ¸öº¯ÊýµÄ×îСֵ¡£ÎÒÃÇͨ¹ý¹Û²ì¾ÍÄÜ·¢ÏÖ×îСֵÆäʵ¾ÍÊÇ (0,0)µã¡£µ«ÊǽÓÏ À´,ÎÒÃÇ»á´ÓÌݶÈϽµËã·¨¿ªÊ¼Ò»²½²½¼ÆËãµ½Õâ¸ö×îСֵ! ÎÒÃǼÙÉè³õʼµÄÆðµãΪ:
¦È
0
=
(
1
,
3
)
\theta^{0} = (1, 3)
¦È0=(1,3)
³õʼµÄѧϰÂÊ(²½³¤):
¦Á
=
0.1
\alpha = 0.1
¦Á=0.1
º¯ÊýµÄÌݶÈΪ:
¦¤
J
(
¦È
)
=
<
2
¦È
1
,
2
¦È
2
>
\Delta J(\theta) =< 2\theta_{1} ,2\theta_{2}>
¦¤J(¦È)=<2¦È1?,2¦È2?>
½øÐжà´Îµü´ú: $$ \begin{eqnarray} \Theta^0 &=& (1, 3) \ \Theta^1 &=& \Theta^0-\alpha\Delta J(\Theta)\ &=&(1,3)-0.1(2,6)\ &=&(0.8, 2.4)\ \Theta^2 &=& (0.8, 2.4)-0.1(1.6, 4.8)\ &=&(0.64, 1.92)\ \Theta^3 &=& (0.512, 1.536)\ \Theta^4 &=& (0.4096, 1.2288)\ \vdots\ \Theta^{10} &=& (0.10737418240000003, 0.32212254720000005)\ \vdots\ \Theta^{50} &=& (1.1417981541647683e^{-5}, 3.425394462494306e^{-5})\ \vdots\ \Theta^{100} &=& (1.6296287810675902e^{-10}, 4.888886343202771e^{-10})\
\end{eqnarray} $$
ÎÒÃÇ·¢ÏÖ,ÒѾ»ù±¾¿¿½üº¯ÊýµÄ×îСֵµã
2.2.4 ÌݶÈϽµ**(**Gradient Descent)¹«Ê½
¦È
i
+
1
=
¦È
i
?
¦Á
?
?
¦È
i
J
(
¦È
)
\Large \theta_{i+1} = \theta_{i} - \alpha\frac{\partial}{\partial\theta_{i}}J(\theta)
¦Èi+1?=¦Èi??¦Á?¦Èi???J(¦È)
- 1)
¦Á
\alpha
¦ÁÊÇʲôº¬Òå?
¦Á
\alpha
¦ÁÔÚÌݶÈϽµËã·¨Öб»³Æ×÷ΪѧϰÂÊ»òÕß²½³¤,Òâζ×ÅÎÒÃÇ¿ÉÒÔͨ¹ý¦ÁÀ´¿ØÖÆÿһ²½×ߵľàÀë,¿ØÖƲÎÊý²»Òª×ßÌ«¿ì,´í¹ýÁËʹËðʧº¯ÊýÈ¡×îСֵµÄµã¡£Í¬Ê±Ò²Òª±£Ö¤²»Òª×ßµÄÌ«Âý,µ¼ÖÂÌ«ÑôÏÂɽÁË,»¹Ã»ÓÐ×ßµ½É½Ï¡£ËùÒÔ¦ÁµÄÑ¡ÔñÔÚÌݶÈϽµ·¨ÖÐÍùÍùÊǺÜÖØÒªµÄ!¦Á²»ÄÜÌ«´óÒ²²»ÄÜ̫С,̫СµÄ»°,¿ÉÄܵ¼Ö³ٳÙ×ß²»µ½×îµÍµã,Ì«´óµÄ»°,»áµ¼Ö´í¹ý×îµÍµã!
- 2) ΪʲôÌݶÈÒª³ËÒÔÒ»¸ö¸ººÅ?
ÌݶÈÇ°¼ÓÒ»¸ö¸ººÅ,¾ÍÒâζ×ų¯×ÅÌݶÈÏà·´µÄ·½ÏòÇ°½ø!ÎÒÃÇÔÚÇ°ÎÄÌáµ½,Ìݶȵķ½Ïòʵ¼Ê¾ÍÊǺ¯ÊýÔڴ˵ãÉÏÉý×î¿ìµÄ·½Ïò!¶øÎÒÃÇÐèÒª³¯×ÅϽµ×î¿ìµÄ·½Ïò×ß,×ÔÈ»¾ÍÊǸºµÄÌݶȵķ½Ïò,ËùÒÔ´Ë´¦ÐèÒª¼ÓÉϸººÅ
ÎÒÃÇͨ¹ýÁ½¸öͼ¸üºÃÀí½âÌݶÈϽµµÄ¹ý³Ì
ËùÒÔÓÐÁËÌݶÈϽµÕâÑùÒ»¸öÓÅ»¯Ëã·¨,»Ø¹é¾ÍÓÐÁË"×Ô¶¯Ñ§Ï°"µÄÄÜÁ¦
3 ÌݶÈϽµºÍÕý¹æ·½³ÌµÄ¶Ô±È
3.1 Á½ÖÖ·½·¨¶Ô±È
ÌݶÈϽµ | Õý¹æ·½³Ì |
---|
ÐèҪѡÔñѧϰÂÊ | ²»ÐèÒª | ÐèÒªµü´úÇó½â | Ò»´ÎÔËËãµÃ³ö | ÌØÕ÷ÊýÁ¿½Ï´ó(³¬¹ý10000¸ö)¿ÉÒÔʹÓà | ÐèÒª¼ÆËã·½³Ì,ʱ¼ä¸´ÔӶȸßO(n3) |
¾¹ýÇ°ÃæµÄ½éÉÜ,ÎÒÃÇ·¢ÏÖ×îС¶þ³Ë·¨ÊÊÓüò½à¸ßЧ,±ÈÌݶÈϽµÕâÑùµÄµü´ú·¨Ëƺõ·½±ãºÜ¶à¡£µ«ÊÇÕâÀïÎÒÃǾÍÁÄÁÄ×îС¶þ³Ë·¨µÄ¾ÖÏÞÐÔ¡£
- Ê×ÏÈ,×îС¶þ³Ë·¨ÐèÒª¼ÆËã
X
T
X
X^TX
XTXµÄÄæ¾ØÕó,ÓпÉÄÜËüµÄÄæ¾ØÕó²»´æÔÚ,ÕâÑù¾ÍûÓа취ֱ½ÓÓÃ×îС¶þ³Ë·¨ÁË¡£
- ´Ëʱ¾ÍÐèҪʹÓÃÌݶÈϽµ·¨¡£µ±È»,ÎÒÃÇ¿ÉÒÔͨ¹ý¶ÔÑù±¾Êý¾Ý½øÐÐÕûÀí,È¥µôÈßÓàÌØÕ÷¡£ÈÃ
X
T
X
X^TX
XTXµÄÐÐÁÐʽ²»Îª0,È»ºó¼ÌÐøʹÓÃ×îС¶þ³Ë·¨¡£
- µÚ¶þ,µ±Ñù±¾ÌØÕ÷n·Ç³£µÄ´óµÄʱºò,¼ÆËã
X
T
X
X^TX
XTXµÄÄæ¾ØÕóÊÇÒ»¸ö·Ç³£ºÄʱµÄ¹¤×÷(nxnµÄ¾ØÕóÇóÄæ),ÉõÖÁ²»¿ÉÐС£
- ´ËʱÒÔÌݶÈϽµÎª´ú±íµÄµü´ú·¨ÈÔÈ»¿ÉÒÔʹÓá£
- ÄÇÕâ¸önµ½µ×¶à´ó¾Í²»ÊʺÏ×îС¶þ³Ë·¨ÄØ?Èç¹ûÄãûÓкܶàµÄ·Ö²¼Ê½´óÊý¾Ý¼ÆËã×ÊÔ´,½¨Ò鳬¹ý10000¸öÌØÕ÷¾ÍÓõü´ú·¨°É¡£»òÕßͨ¹ýÖ÷³É·Ö·ÖÎö½µµÍÌØÕ÷µÄά¶ÈºóÔÙÓÃ×îС¶þ³Ë·¨¡£
- µÚÈý,Èç¹ûÄâºÏº¯Êý²»ÊÇÏßÐÔµÄ,ÕâʱÎÞ·¨Ê¹ÓÃ×îС¶þ³Ë·¨,ÐèҪͨ¹ýһЩ¼¼ÇÉת»¯ÎªÏßÐÔ²ÅÄÜʹÓÃ,´ËʱÌݶÈϽµÈÔÈ»¿ÉÒÔÓá£
- µÚËÄ,ÒÔÏÂÌØÊâÇé¿ö:
- µ±Ñù±¾Á¿mºÜÉÙ,СÓÚÌØÕ÷ÊýnµÄʱºò,ÕâʱÄâºÏ·½³ÌÊÇÇ·¶¨µÄ,³£ÓõÄÓÅ»¯·½·¨¶¼ÎÞ·¨È¥ÄâºÏÊý¾Ý¡£
- µ±Ñù±¾Á¿mµÈÓÚÌØÕ÷ÊýnµÄʱºò,Ó÷½³Ì×éÇó½â¾Í¿ÉÒÔÁË¡£
- µ±m´óÓÚnʱ,ÄâºÏ·½³ÌÊdz¬¶¨µÄ,Ò²¾ÍÊÇÎÒÃdz£ÓÃÓë×îС¶þ³Ë·¨µÄ³¡¾°ÁË¡£
3.2 Ë㷨ѡÔñÒÀ¾Ý:
- С¹æÄ£Êý¾Ý:
- Õý¹æ·½³Ì:LinearRegression
- Áë»Ø¹é: Ridge
- ´ó¹æÄ£Êý¾Ý:
С½á
- Ëðʧº¯Êý¡¾ÖªµÀ¡¿
- ÏßÐԻعéÓÅ»¯·½·¨¡¾ÖªµÀ¡¿
- Õý¹æ·½³Ì ¨C Ò»õí¶ø¾Í¡¾ÖªµÀ¡¿
- Ö»ÊÇÊʺÏÑù±¾ºÍÌØÕ÷±È½ÏÉÙµÄÇé¿ö
- ÌݶÈϽµ·¨ ¨C ÑÐò½¥½ø¡¾ÖªµÀ¡¿
- ÌݶȵĸÅÄî
- µ¥±äÁ¿ ¨C ÇÐÏß
- ¶à±äÁ¿ ¨C ÏòÁ¿
- ÌݶÈϽµ·¨ÖйØ×¢µÄÁ½¸ö²ÎÊý
- ¦Á ¨C ¾ÍÊDz½³¤
- ²½³¤Ì«Ð¡ ¨C ÏÂɽ̫Âý
- ²½³¤Ì«´ó ¨C ÈÝÒ×Ìø¹ý¼«Ð¡Öµµã
- ΪʲôÌݶÈÒª¼ÓÒ»¸ö¸ººÅ
- Ìݶȷ½ÏòÊÇÉÏÉý×î¿ì·½Ïò,¸ººÅ¾ÍÊÇϽµ×î¿ì·½Ïò
- ÌݶÈϽµ·¨ºÍÕý¹æ·½³ÌÑ¡ÔñÒÀ¾Ý¡¾ÖªµÀ¡¿
- С¹æÄ£Êý¾Ý:
- Õý¹æ·½³Ì:LinearRegression
- Áë»Ø¹é: Ridge
- ´ó¹æÄ£Êý¾Ý:
2.5 ÌݶÈϽµ·½·¨½éÉÜ
ѧϰĿ±ê
- Á˽âÈ«ÌݶÈϽµËã·¨µÄÔÀí
- Á˽âËæ»úÌݶÈϽµËã·¨µÄÔÀí
- Á˽âËæ»úƽ¾ùÌݶÈϽµËã·¨µÄÔÀí
- Á˽âСÅúÁ¿ÌݶÈϽµËã·¨µÄÔÀí
1 ÌݶÈϽµ·¨´ó¼Ò×å
Ê×ÏÈ,ÎÒÃÇÀ´¿´Ò»ÏÂ,³£¼ûµÄÌݶÈϽµËã·¨ÓÐ:
- È«ÌݶÈϽµËã·¨(Full gradient descent),
- Ëæ»úÌݶÈϽµËã·¨(Stochastic gradient descent),
- СÅúÁ¿ÌݶÈϽµËã·¨(Mini-batch gradient descent),
- Ëæ»úƽ¾ùÌݶÈϽµËã·¨(Stochastic average gradient descent)
ËüÃǶ¼ÊÇΪÁËÕýÈ·µØµ÷½ÚȨÖØÏòÁ¿,ͨ¹ýΪÿ¸öȨÖؼÆËãÒ»¸öÌݶÈ,´Ó¶ø¸üÐÂȨֵ,ʹĿ±êº¯Êý¾¡¿ÉÄÜ×îС»¯¡£Æä²î±ðÔÚÓÚÑù±¾µÄʹÓ÷½Ê½²»Í¬¡£
1.1 È«ÌݶÈϽµËã·¨(FG)
ÅúÁ¿ÌݶÈϽµ·¨,ÊÇÌݶÈϽµ·¨×î³£ÓõÄÐÎʽ,¾ßÌå×ö·¨Ò²¾ÍÊÇÔÚ¸üвÎÊýʱʹÓÃËùÓеÄÑù±¾À´½øÐиüС£
¼ÆËãѵÁ·¼¯ËùÓÐÑù±¾Îó²î,¶ÔÆäÇóºÍÔÙȡƽ¾ùÖµ×÷ΪĿ±êº¯Êý¡£
ȨÖØÏòÁ¿ÑØÆäÌݶÈÏà·´µÄ·½ÏòÒƶ¯,´Ó¶øʹµ±Ç°Ä¿±êº¯Êý¼õÉÙµÃ×î¶à¡£
ÆäÊÇÔÚÕû¸öѵÁ·Êý¾Ý¼¯ÉϼÆËãËðʧº¯Êý¹ØÓÚ²ÎÊý
¦È
\theta
¦È µÄÌݶÈ:
¦È
i
+
1
=
¦È
i
?
¦Á
¡Æ
j
=
0
m
(
h
¦È
(
x
0
(
j
)
,
x
1
(
j
)
,
?
?
,
x
n
(
j
)
)
?
y
j
)
x
i
(
j
)
\large \theta_{i+1} = \theta_i - \alpha\sum_{j=0}^{m}(h_{\theta}(x_0^{(j)},x_1^{(j)},\cdots,x_n^{(j)})-y_j)x_i^{(j)}
¦Èi+1?=¦Èi??¦Áj=0¡Æm?(h¦È?(x0(j)?,x1(j)?,?,xn(j)?)?yj?)xi(j)?
ÓÉÓÚÎÒÃÇÓÐm¸öÑù±¾,ÕâÀïÇóÌݶȵÄʱºò¾ÍÓÃÁËËùÓÐm¸öÑù±¾µÄÌݶÈÊý¾Ý¡£
×¢Òâ:
- ÒòΪÔÚÖ´ÐÐÿ´Î¸üÐÂʱ,ÎÒÃÇÐèÒªÔÚÕû¸öÊý¾Ý¼¯ÉϼÆËãËùÓеÄÌݶÈ,ËùÒÔÅúÌݶÈϽµ·¨µÄËٶȻáºÜÂý,ͬʱ,È«ÌݶÈϽµ·¨ÎÞ·¨´¦Àí³¬³öÄÚ´æÈÝÁ¿ÏÞÖƵÄÊý¾Ý¼¯¡£
- È«ÌݶÈϽµ·¨Í¬ÑùÒ²²»ÄÜÔÚÏ߸üÐÂÄ£ÐÍ,¼´ÔÚÔËÐеĹý³ÌÖÐ,²»ÄÜÔö¼ÓеÄÑù±¾¡£
1.2 Ëæ»úÌݶÈϽµËã·¨(SG)
ÓÉÓÚFGÿµü´ú¸üÐÂÒ»´ÎȨÖض¼ÐèÒª¼ÆËãËùÓÐÑù±¾Îó²î,¶øʵ¼ÊÎÊÌâÖо³£ÓÐÉÏÒÚµÄѵÁ·Ñù±¾,¹ÊЧÂÊÆ«µÍ,ÇÒÈÝÒ×ÏÝÈë¾Ö²¿×îÓŽâ,Òò´ËÌá³öÁËËæ»úÌݶÈϽµËã·¨¡£
ÆäÿÂÖ¼ÆËãµÄÄ¿±êº¯Êý²»ÔÙÊÇÈ«ÌåÑù±¾Îó²î,¶ø½öÊǵ¥¸öÑù±¾Îó²î,¼´Ã¿´ÎÖ»´úÈë¼ÆËãÒ»¸öÑù±¾Ä¿±êº¯ÊýµÄÌݶÈÀ´¸üÐÂȨÖØ,ÔÙÈ¡ÏÂÒ»¸öÑù±¾Öظ´´Ë¹ý³Ì,Ö±µ½Ëðʧº¯ÊýֵֹͣϽµ»òËðʧº¯ÊýֵСÓÚij¸ö¿ÉÒÔÈÝÈ̵ÄãÐÖµ¡£
´Ë¹ý³Ì¼òµ¥,¸ßЧ,ͨ³£¿ÉÒԽϺõرÜÃâ¸üеü´úÊÕÁ²µ½¾Ö²¿×îÓŽ⡣Æäµü´úÐÎʽΪ
¦È
i
+
1
=
¦È
i
?
¦Á
(
h
¦È
(
x
0
(
j
)
,
x
1
(
j
)
,
?
?
,
x
n
(
j
)
)
?
y
j
)
x
i
(
j
)
\large \theta_{i+1}=\theta_i-\alpha(h_{\theta}(x_0^{(j)},x_1^{(j)},\cdots,x_n^{(j)})-y_j)x_i^{(j)}
¦Èi+1?=¦Èi??¦Á(h¦È?(x0(j)?,x1(j)?,?,xn(j)?)?yj?)xi(j)? µ«ÊÇÓÉÓÚ,SGÿ´ÎֻʹÓÃÒ»¸öÑù±¾µü´ú,ÈôÓöÉÏÔëÉùÔòÈÝÒ×ÏÝÈë¾Ö²¿×îÓŽ⡣
1.3 СÅúÁ¿ÌݶÈϽµËã·¨(mini-batch)
СÅúÁ¿ÌݶÈϽµËã·¨ÊÇFGºÍSGµÄÕÛÖз½°¸,ÔÚÒ»¶¨³Ì¶ÈÉϼæ¹ËÁËÒÔÉÏÁ½ÖÖ·½·¨µÄÓŵ㡣
ÿ´Î´ÓѵÁ·Ñù±¾¼¯ÉÏËæ»ú³éÈ¡Ò»¸öСÑù±¾¼¯,ÔÚ³é³öÀ´µÄСÑù±¾¼¯ÉϲÉÓÃFGµü´ú¸üÐÂȨÖØ¡£
±»³é³öµÄСÑù±¾¼¯Ëùº¬Ñù±¾µãµÄ¸öÊý³ÆΪbatch_size,ͨ³£ÉèÖÃΪ2µÄÃݴη½,¸üÓÐÀûÓÚGPU¼ÓËÙ´¦Àí¡£
ÌرðµÄ,Èôbatch_size=1,Ôò±ä³ÉÁËSG;Èôbatch_size=n,Ôò±ä³ÉÁËFG.Æäµü´úÐÎʽΪ
¦È
i
+
1
=
¦È
i
?
¦Á
¡Æ
j
=
t
t
+
x
?
1
(
h
¦È
(
x
0
(
j
)
,
x
1
(
j
)
,
?
?
,
x
n
(
j
)
)
?
y
j
)
x
i
(
j
)
\large \theta_{i+1}=\theta_i-\alpha\sum_{j=t}^{t+x-1}(h_{\theta}(x_0^{(j)},x_1^{(j)},\cdots,x_n^{(j)})-y_j)x_i^{(j)}
¦Èi+1?=¦Èi??¦Áj=t¡Æt+x?1?(h¦È?(x0(j)?,x1(j)?,?,xn(j)?)?yj?)xi(j)?
ÉÏʽÖÐ,Ò²¾ÍÊÇÎÒÃÇ´Óm¸öÑù±¾ÖÐ,Ñ¡Ôñx¸öÑù±¾½øÐеü´ú(1<x<m),
1.4 Ëæ»úƽ¾ùÌݶÈϽµËã·¨(SAG)
ÔÚSG·½·¨ÖÐ,ËäÈ»±Ü¿ªÁËÔËËã³É±¾´óµÄÎÊÌâ,µ«¶ÔÓÚ´óÊý¾ÝѵÁ·¶øÑÔ,SGЧ¹û³£²»¾¡ÈçÈËÒâ,ÒòΪÿһÂÖÌݶȸüж¼ÍêÈ«ÓëÉÏÒ»ÂÖµÄÊý¾ÝºÍÌݶÈÎ޹ء£
Ëæ»úƽ¾ùÌݶÈËã·¨¿Ë·þÁËÕâ¸öÎÊÌâ,ÔÚÄÚ´æÖÐΪÿһ¸öÑù±¾¶¼Î¬»¤Ò»¸ö¾ÉµÄÌݶÈ,Ëæ»úÑ¡ÔñµÚi¸öÑù±¾À´¸üдËÑù±¾µÄÌݶÈ,ÆäËûÑù±¾µÄÌݶȱ£³Ö²»±ä,È»ºóÇóµÃËùÓÐÌݶȵÄƽ¾ùÖµ,½ø¶ø¸üÐÂÁ˲ÎÊý¡£
Èç´Ë,ÿһÂÖ¸üнöÐè¼ÆËãÒ»¸öÑù±¾µÄÌݶÈ,¼ÆËã³É±¾µÈͬÓÚSG,µ«ÊÕÁ²ËٶȿìµÃ¶à¡£
Æäµü´úÐÎʽΪ:
¦È
i
+
1
=
¦È
i
?
¦Á
n
(
h
¦È
(
x
0
(
j
)
,
x
1
(
j
)
,
.
.
.
x
n
(
j
)
)
?
y
j
)
x
i
(
j
)
\large \theta_{i+1}=\theta _i-\frac{\alpha }{n}(h_\theta (x^{(j)}_0,x^{(j)}_1,...x^{(j)}_n)-y_j)x_i^{(j)}
¦Èi+1?=¦Èi??n¦Á?(h¦È?(x0(j)?,x1(j)?,...xn(j)?)?yj?)xi(j)?
- ÎÒÃÇÖªµÀsgdÊǵ±Ç°È¨ÖؼõÈ¥²½³¤³ËÒÔÌݶÈ,µÃµ½ÐµÄȨÖØ¡£sagÖеÄa,¾ÍÊÇƽ¾ùµÄÒâ˼,¾ßÌå˵,¾ÍÊÇÔÚµÚk²½µü´úµÄʱºò,ÎÒ¿¼ÂǵÄÕâÒ»²½ºÍÇ°Ãæn-1¸öÌݶȵÄƽ¾ùÖµ,µ±Ç°È¨ÖؼõÈ¥²½³¤³ËÒÔ×î½ün¸öÌݶȵÄƽ¾ùÖµ¡£
- nÊÇ×Ô¼ºÉèÖõÄ,µ±n=1µÄʱºò,¾ÍÊÇÆÕͨµÄsgd¡£
- Õâ¸öÏë·¨·Ç³£µÄ¼òµ¥,ÔÚËæ»úÖÐÓÖÔö¼ÓÁËÈ·¶¨ÐÔ,ÀàËÆÓÚmini-batch sgdµÄ×÷ÓÃ,µ«²»Í¬µÄÊÇ,sagÓÖûÓÐÈ¥¼ÆËã¸ü¶àµÄÑù±¾,Ö»ÊÇÀûÓÃÁË֮ǰ¼ÆËã³öÀ´µÄÌݶÈ,ËùÒÔÿ´Îµü´úµÄ¼ÆËã³É±¾Ô¶Ð¡ÓÚmini-batch sgd,ºÍsgdÏ൱¡£Ð§¹û¶øÑÔ,sagÏà¶ÔÓÚsgd,ÊÕÁ²ËٶȿìÁ˺ܶࡣÕâÒ»µãÏÂÃæµÄÂÛÎÄÖÐÓоßÌåµÄÃèÊöºÍÖ¤Ã÷¡£
- SAGÂÛÎÄÁ´½Ó:https://arxiv.org/pdf/1309.2388.pdf
С½á
- È«ÌݶÈϽµËã·¨(FG)¡¾Á˽⡿
- ÔÚ½øÐмÆËãµÄʱºò,¼ÆËãËùÓÐÑù±¾µÄÎó²îƽ¾ùÖµ,×÷ΪÎÒµÄÄ¿±êº¯Êý
- Ëæ»úÌݶÈϽµËã·¨(SG)¡¾Á˽⡿
- ÿ´ÎֻѡÔñÒ»¸öÑù±¾½øÐп¼ºË
- СÅúÁ¿ÌݶÈϽµËã·¨(mini-batch)¡¾Á˽⡿
- Ëæ»úƽ¾ùÌݶÈϽµËã·¨(SAG)¡¾Á˽⡿
- »á¸øÿ¸öÑù±¾¶¼Î¬³ÖÒ»¸öƽ¾ùÖµ,ºóÆÚ¼ÆËãµÄʱºò,²Î¿¼Õâ¸öƽ¾ùÖµ
2.6 ÏßÐԻع鰸Àý
ѧϰĿ±ê
- Á˽âÕý¹æ·½³ÌµÄapi¼°³£ÓòÎÊý
- Á˽âÌݶÈϽµ·¨api¼°³£ÓòÎÊý
- ÖªµÀÈçºÎ¶ÔÏßÐԻعéÄ£ÐͽøÐÐÆÀ¹À
1 ÏßÐԻعéAPI
- sklearn.linear_model.LinearRegression(fit_intercept=True)
- ͨ¹ýÕý¹æ·½³ÌÓÅ»¯
- ²ÎÊý
- fit_intercept:ÊÇ·ñ¼ÆËãÆ«ÖÃ
- ÊôÐÔ
- LinearRegression.coef_:»Ø¹éϵÊý
- LinearRegression.intercept_:Æ«ÖÃ
- sklearn.linear_model.SGDRegressor(loss=¡°squared_loss¡±, fit_intercept=True, learning_rate =¡®invscaling¡¯, eta0=0.01)
- SGDRegressorÀàʵÏÖÁËËæ»úÌݶÈϽµÑ§Ï°,ËüÖ§³Ö²»Í¬µÄlossº¯ÊýºÍÕýÔò»¯³Í·£ÏîÀ´ÄâºÏÏßÐԻعéÄ£ÐÍ¡£
- ²ÎÊý:
- loss:ËðʧÀàÐÍ
- loss=¡±squared_loss¡±: ÆÕͨ×îС¶þ³Ë·¨
- fit_intercept:ÊÇ·ñ¼ÆËãÆ«ÖÃ
- learning_rate : string, optional
- ѧϰÂÊÌî³ä
- ¡¯constant¡¯: eta = eta0
- ¡¯optimal¡¯: eta = 1.0 / (alpha * (t + t0)) [default]
- ¡®invscaling¡¯: eta = eta0 / pow(t, power_t)
- power_t=0.25:´æÔÚ¸¸À൱ÖÐ
- ¶ÔÓÚÒ»¸ö³£ÊýÖµµÄѧϰÂÊÀ´Ëµ,¿ÉÒÔʹÓÃlearning_rate=¡¯constant¡¯ ,²¢Ê¹ÓÃeta0À´Ö¸¶¨Ñ§Ï°ÂÊ¡£
- ÊôÐÔ:
- SGDRegressor.coef_:»Ø¹éϵÊý
- SGDRegressor.intercept_:Æ«ÖÃ
sklearnÌṩ¸øÎÒÃÇÁ½ÖÖʵÏÖµÄAPI, ¿ÉÒÔ¸ù¾ÝÑ¡ÔñʹÓÃ
2 °¸Àý:²¨Ê¿¶Ù·¿¼ÛÔ¤²â
2.1 °¸Àý±³¾°½éÉÜ
¸ø¶¨µÄÕâЩÌØÕ÷,ÊÇר¼ÒÃǵóöµÄÓ°Ïì·¿¼ÛµÄ½á¹ûÊôÐÔ¡£ÎÒÃǴ˽׶β»ÐèÒª×Ô¼ºÈ¥Ì½¾¿ÌØÕ÷ÊÇ·ñÓÐÓÃ,Ö»ÐèҪʹÓÃÕâЩÌØÕ÷¡£µ½ºóÃæÁ¿»¯ºÜ¶àÌØÕ÷ÐèÒªÎÒÃÇ×Ô¼ºÈ¥Ñ°ÕÒ
2.2 °¸Àý·ÖÎö
»Ø¹éµ±ÖеÄÊý¾Ý´óС²»Ò»ÖÂ,ÊÇ·ñ»áµ¼Ö½á¹ûÓ°Ïì½Ï´ó¡£ËùÒÔÐèÒª×ö±ê×¼»¯´¦Àí¡£
- Êý¾Ý·Ö¸îÓë±ê×¼»¯´¦Àí
- »Ø¹éÔ¤²â
- ÏßÐԻعéµÄË㷨Ч¹ûÆÀ¹À
2.3 »Ø¹éÐÔÄÜÆÀ¹À
¾ù·½Îó²î(Mean Squared Error, MSE)ÆÀ¼Û»úÖÆ:
M
S
E
=
1
m
¡Æ
i
=
1
m
(
y
i
?
y
^
)
2
\Large MSE = \frac{1}{m}\sum_{i=1}^{m}(y^i-\hat{y})^2
MSE=m1?i=1¡Æm?(yi?y^?)2 ×¢:
y
i
y^i
yiΪԤ²âÖµ,
y
^
\hat{y}
y^? ΪÕæʵֵ
- sklearn.metrics.mean_squared_error(y_true, y_pred)
- ¾ù·½Îó²î»Ø¹éËðʧ
- y_true:Õæʵֵ
- y_pred:Ô¤²âÖµ
- return:¸¡µãÊý½á¹û
2.4 ´úÂëʵÏÖ
µ¼°ü
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
from sklearn.linear_model import SGDRegressor
from sklearn.linear_model import LinearRegression
Õý¹æ·½³Ì
data = load_boston()
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
estimator = LinearRegression()
estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)
ÌݶÈϽµ·¨
data = load_boston()
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.fit_transform(x_test)
estimator = SGDRegressor(max_iter=1000)
estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)
ÎÒÃÇÒ²¿ÉÒÔ³¢ÊÔÈ¥ÐÞ¸ÄѧϰÂÊ
estimator = SGDRegressor(max_iter=1000,learning_rate="constant",eta0=0.1)
´ËʱÎÒÃÇ¿ÉÒÔͨ¹ýµ÷²ÎÊý,ÕÒµ½Ñ§Ï°ÂÊЧ¹û¸üºÃµÄÖµ¡£
С½á
- Õý¹æ·½³Ì
- sklearn.linear_model.LinearRegression()
- ÌݶÈϽµ·¨
- sklearn.linear_model.SGDRegressor()
- ÏßÐԻعéÐÔÄÜÆÀ¹À¡¾ÖªµÀ¡¿
- ¾ù·½Îó²î:sklearn.metrics.mean_squared_error
2.7 Ç·ÄâºÏºÍ¹ýÄâºÏ
ѧϰĿ±ê
- ÕÆÎÕ¹ýÄâºÏ¡¢Ç·ÄâºÏµÄ¸ÅÄî
- ÕÆÎÕ¹ýÄâºÏ¡¢Ç·ÄâºÏ²úÉúµÄÔÒò
- ÖªµÀʲôÊÇÕýÔò»¯,ÒÔ¼°ÕýÔò»¯µÄ·ÖÀà
1 ¶¨Òå
-
¹ýÄâºÏ:Ò»¸ö¼ÙÉèÔÚѵÁ·Êý¾ÝÉÏÄܹ»»ñµÃ±ÈÆäËû¼ÙÉè¸üºÃµÄÄâºÏ, µ«ÊÇÔÚ²âÊÔÊý¾Ý¼¯ÉÏÈ´²»ÄܺܺõØÄâºÏÊý¾Ý(ÌåÏÖÔÚ׼ȷÂÊϽµ),´ËʱÈÏΪÕâ¸ö¼ÙÉè³öÏÖÁ˹ýÄâºÏµÄÏÖÏó¡£(Ä£Ð͹ýÓÚ¸´ÔÓ) -
Ç·ÄâºÏ:Ò»¸ö¼ÙÉèÔÚѵÁ·Êý¾ÝÉϲ»ÄÜ»ñµÃ¸üºÃµÄÄâºÏ,²¢ÇÒÔÚ²âÊÔÊý¾Ý¼¯ÉÏÒ²²»ÄܺܺõØÄâºÏÊý¾Ý,´ËʱÈÏΪÕâ¸ö¼ÙÉè³öÏÖÁËÇ·ÄâºÏµÄÏÖÏó¡£(Ä£Ð͹ýÓÚ¼òµ¥) -
¹ýÄâºÏºÍÇ·ÄâºÏµÄÇø±ð:
- Ç·ÄâºÏÔÚѵÁ·¼¯ºÍ²âÊÔ¼¯ÉϵÄÎó²î¶¼½Ï´ó
- ¹ýÄâºÏÔÚѵÁ·¼¯ÉÏÎó²î½ÏС,¶ø²âÊÔ¼¯ÉÏÎó²î½Ï´ó
-
ͨ¹ý´úÂëÈÏʶ¹ýÄâºÏºÍÇ·ÄâºÏ
-
»æÖÆÊý¾Ý import numpy as np
import matplotlib.pyplot as plt
np.random.seed(666)
x = np.random.uniform(-3,3,size = 100)
X = x.reshape(-1,1)
y = 0.5* x**2 + x+2 + np.random.normal(0,1,size = 100)
from sklearn.linear_model import LinearRegression
estimator = LinearRegression()
estimator.fit(X,y)
y_predict = estimator.predict(X)
plt.scatter(x,y)
plt.plot(x,y_predict,color = 'r')
plt.show()
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-GXAeZjdK-1631190399729)(./pics/1.png)]
from sklearn.metrics import mean_squared_error
mean_squared_error(y,y_predict)
-
Ìí¼Ó¶þ´ÎÏî,»æÖÆͼÏñ
X2 = np.hstack([X,X**2])
estimator2 = LinearRegression()
estimator2.fit(X2,y)
y_predict2 = estimator2.predict(X2)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict2[np.argsort(x)],color = 'r')
plt.show()
from sklearn.metrics import mean_squared_error
mean_squared_error(y,y_predict2)
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-2rFw5c3P-1631190399731)(./pics/2.png)] -
ÔٴμÓÈë¸ß´ÎÏî,»æÖÆͼÏñ,¹Û²ì¾ù·½Îó²î½á¹û X5 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10])
estimator3 = LinearRegression()
estimator3.fit(X5,y)
y_predict5 = estimator3.predict(X5)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict5[np.argsort(x)],color = 'r')
plt.show()
error = mean_squared_error(y, y_predict5)
error
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-BVmS9ckb-1631190399732)(./pics/3.png)] ͨ¹ýÉÏÊö¹Û²ì·¢ÏÖ,Ëæ׿ÓÈëµÄ¸ß´ÎÏîÔ½À´Ô½¶à,ÄâºÏ³Ì¶ÈÔ½À´Ô½¸ß,¾ù·½Îó²îÒ²Ëæ׿ÓÈëÔ½À´Ô½Ð¡¡£ËµÃ÷ÒѾ²»ÔÙÇ·ÄâºÏÁË¡£ ÎÊÌâ:ÈçºÎÅжϳöÏÖ¹ýÄâºÏÄØ?
2 ÔÒòÒÔ¼°½â¾ö°ì·¨
- Ç·ÄâºÏÔÒòÒÔ¼°½â¾ö°ì·¨
- ÔÒò:ѧϰµ½Êý¾ÝµÄÌØÕ÷¹ýÉÙ
- ½â¾ö°ì·¨:
- **1)Ìí¼ÓÆäËûÌØÕ÷Ïî,**ÓÐʱºòÎÒÃÇÄ£ÐͳöÏÖÇ·ÄâºÏµÄʱºòÊÇÒòΪÌØÕ÷Ïî²»¹»µ¼ÖµÄ,¿ÉÒÔÌí¼ÓÆäËûÌØÕ÷ÏîÀ´ºÜºÃµØ½â¾ö¡£
- 2)Ìí¼Ó¶àÏîʽÌØÕ÷,Õâ¸öÔÚ»úÆ÷ѧϰËã·¨ÀïÃæÓõĺÜÆÕ±é,ÀýÈ罫ÏßÐÔÄ£ÐÍͨ¹ýÌí¼Ó¶þ´ÎÏî»òÕßÈý´ÎÏîʹģÐÍ·º»¯ÄÜÁ¦¸üÇ¿¡£
- ¹ýÄâºÏÔÒòÒÔ¼°½â¾ö°ì·¨
- ÔÒò:ÔʼÌØÕ÷¹ý¶à,´æÔÚһЩàÐÔÓÌØÕ÷, Ä£Ð͹ýÓÚ¸´ÔÓÊÇÒòΪģÐͳ¢ÊÔÈ¥¼æ¹Ë¸÷¸ö²âÊÔÊý¾Ýµã
- ½â¾ö°ì·¨:
- 1)ÖØÐÂÇåÏ´Êý¾Ý,µ¼Ö¹ýÄâºÏµÄÒ»¸öÔÒòÒ²ÓпÉÄÜÊÇÊý¾Ý²»´¿µ¼ÖµÄ,Èç¹û³öÏÖÁ˹ýÄâºÏ¾ÍÐèÒªÎÒÃÇÖØÐÂÇåÏ´Êý¾Ý¡£
- 2)Ôö´óÊý¾ÝµÄѵÁ·Á¿,»¹ÓÐÒ»¸öÔÒò¾ÍÊÇÎÒÃÇÓÃÓÚѵÁ·µÄÊý¾ÝÁ¿Ì«Ð¡µ¼ÖµÄ,ѵÁ·Êý¾ÝÕ¼×ÜÊý¾ÝµÄ±ÈÀý¹ýС¡£
- 3)ÕýÔò»¯
- 4)¼õÉÙÌØÕ÷ά¶È
3 ÕýÔò»¯
3.1 ʲôÊÇÕýÔò»¯
ÔÚ½â¾ö»Ø¹é¹ýÄâºÏÖÐ,ÎÒÃÇÑ¡ÔñÕýÔò»¯¡£µ«ÊǶÔÓÚÆäËû»úÆ÷ѧϰËã·¨Èç·ÖÀàËã·¨À´ËµÒ²»á³öÏÖÕâÑùµÄÎÊÌâ,³ýÁËһЩËã·¨±¾Éí×÷ÓÃÖ®Íâ(¾ö²ßÊ÷¡¢Éñ¾ÍøÂç),ÎÒÃǸü¶àµÄÒ²ÊÇÈ¥×Ô¼º×öÌØÕ÷Ñ¡Ôñ,°üÀ¨Ö®Ç°ËµµÄɾ³ý¡¢ºÏ²¢Ò»Ð©ÌØÕ÷
ÈçºÎ½â¾ö?
ÔÚѧϰµÄʱºò,Êý¾ÝÌṩµÄÌØÕ÷ÓÐЩӰÏìÄ£Ð͸´ÔӶȻòÕßÕâ¸öÌØÕ÷µÄÊý¾ÝµãÒì³£½Ï¶à,ËùÒÔËã·¨ÔÚѧϰµÄʱºò¾¡Á¿¼õÉÙÕâ¸öÌØÕ÷µÄÓ°Ïì(ÉõÖÁɾ³ýij¸öÌØÕ÷µÄÓ°Ïì),Õâ¾ÍÊÇÕýÔò»¯
×¢:µ÷Õûʱºò,Ëã·¨²¢²»ÖªµÀij¸öÌØÕ÷Ó°Ïì,¶øÊÇÈ¥µ÷Õû²ÎÊýµÃ³öÓÅ»¯µÄ½á¹û
3.2 ÕýÔò»¯Àà±ð
- L2ÕýÔò»¯
- ×÷ÓÃ:¿ÉÒÔʹµÃÆäÖÐWµÄ±äС,ÆäÖкÜСµÄwÖµ»áÇ÷½üÓÚ0,Ï÷ÈõijЩÌØÕ÷µÄÓ°Ïì
- Óŵã:ԽСµÄ²ÎÊý˵Ã÷Ä£ÐÍÔ½¼òµ¥,Ô½¼òµ¥µÄÄ£ÐÍÔòÔ½²»ÈÝÒײúÉú¹ýÄâºÏÏÖÏó
- Ridge»Ø¹é: from sklearn.linear_model import Ridge
- L1ÕýÔò»¯
- ×÷ÓÃ:¿ÉÒÔʹµÃÆäÖÐһЩÌØÕ÷WµÄÖµÖ±½ÓΪ0,ɾ³ýÕâЩÌØÕ÷µÄÓ°Ïì
- LASSO»Ø¹é: from sklearn.linear_model import Lasso
- ÕýÔò»¯°¸Àý
X10 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10])
estimator3 = LinearRegression()
estimator3.fit(X10,y)
y_predict3 = estimator3.predict(X10)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict3[np.argsort(x)],color = 'r')
plt.show()
estimator3.coef_
array([ 1.32292089e+00, 2.03952017e+00, -2.88731664e-01, -1.24760429e+00,
8.06147066e-02, 3.72878513e-01, -7.75395040e-03, -4.64121137e-02,
1.84873446e-04, 2.03845917e-03])
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
X10 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10])
estimator_l1 = Lasso(alpha=0.005,normalize=True)
estimator_l1.fit(X10,y)
y_predict_l1 = estimator_l1.predict(X10)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict_l1[np.argsort(x)],color = 'r')
plt.show()
estimator_l1.coef_
array([ 0.97284077, 0.4850203 , 0. , 0. , -0. ,
0. , -0. , 0. , -0. , 0. ])
X10 = np.hstack([X2,X**3,X**4,X**5,X**6,X**7,X**8,X**9,X**10])
estimator_l2 = Ridge(alpha=0.005,normalize=True)
estimator_l2.fit(X10,y)
y_predict_l2 = estimator_l2.predict(X10)
plt.scatter(x,y)
plt.plot(np.sort(x),y_predict_l2[np.argsort(x)],color = 'r')
plt.show()
estimator_l2.coef_
array([ 9.91283840e-01, 5.24820573e-01, 1.57614237e-02, 2.34128982e-03,
7.26947948e-04, -2.99893698e-04, -8.28333499e-05, -4.51949529e-05,
-4.21312015e-05, -8.22992826e-07])
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-IEkiST1C-1631190399735)(./pics/26img.png)]
4 Áë»Ø¹é°¸Àý
4.1 Áë»Ø¹éµÄAPI
- sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True,solver=¡°auto¡±, normalize=False)
- ¾ßÓÐl2ÕýÔò»¯µÄÏßÐԻعé
- alpha:ÕýÔò»¯Á¦¶È,Ò²½Ð ¦Ë
- solver:»á¸ù¾ÝÊý¾Ý×Ô¶¯Ñ¡ÔñÓÅ»¯·½·¨
- sag:Èç¹ûÊý¾Ý¼¯¡¢ÌØÕ÷¶¼±È½Ï´ó,Ñ¡Ôñ¸ÃËæ»úÌݶÈϽµÓÅ»¯
- normalize:Êý¾ÝÊÇ·ñ½øÐбê×¼»¯
- normalize=False:¿ÉÒÔÔÚfit֮ǰµ÷ÓÃpreprocessing.StandardScaler±ê×¼»¯Êý¾Ý
- Ridge.coef_:»Ø¹éȨÖØ
- Ridge.intercept_:»Ø¹éÆ«ÖÃ
Ridge·½·¨Ï൱ÓÚSGDRegressor(penalty=¡®l2¡¯, loss=¡°squared_loss¡±),Ö»²»¹ýSGDRegressorʵÏÖÁËÒ»¸öÆÕͨµÄËæ»úÌݶÈϽµÑ§Ï°,ÍƼöʹÓÃRidge(ʵÏÖÁËSAG)
- sklearn.linear_model.RidgeCV(_BaseRidgeCV, RegressorMixin)
- ¾ßÓÐl2ÕýÔò»¯µÄÏßÐԻعé,¿ÉÒÔ½øÐн»²æÑéÖ¤
- coef_:»Ø¹éϵÊý
class _BaseRidgeCV(LinearModel):
def __init__(self, alphas=(0.1, 1.0, 10.0),
fit_intercept=True, normalize=False,scoring=None,
cv=None, gcv_mode=None,
store_cv_values=False):
4.2 ÕýÔò»¯³Ì¶ÈµÄ±ä»¯,¶Ô½á¹ûµÄÓ°Ïì
- ÕýÔò»¯Á¦¶ÈÔ½´ó,ȨÖØϵÊý»áԽС
- ÕýÔò»¯Á¦¶ÈԽС,ȨÖØϵÊý»áÔ½´ó
4.3 Áë»Ø¹éʵÏÖ²¨Ê¿¶Ù·¿¼ÛÔ¤²â
data = load_boston()
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
estimator = Ridge(alpha=1)
estimator.fit(x_train, y_train)
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)
С½á
- Ç·ÄâºÏ¡¾ÕÆÎÕ¡¿
- ÔÚѵÁ·¼¯ÉϱíÏÖ²»ºÃ,ÔÚ²âÊÔ¼¯ÉϱíÏÖ²»ºÃ
- ½â¾ö·½·¨:
- ¼ÌÐøѧϰ
- 1.Ìí¼ÓÆäËûÌØÕ÷Ïî
- 2.Ìí¼Ó¶àÏîʽÌØÕ÷
- ¹ýÄâºÏ¡¾ÕÆÎÕ¡¿
- ÔÚѵÁ·¼¯ÉϱíÏÖºÃ,ÔÚ²âÊÔ¼¯ÉϱíÏÖ²»ºÃ
- ½â¾ö·½·¨:
- 1.ÖØÐÂÇåÏ´Êý¾Ý¼¯
- 2.Ôö´óÊý¾ÝµÄѵÁ·Á¿
- 3.ÕýÔò»¯
- 4.¼õÉÙÌØÕ÷ά¶È
- ÕýÔò»¯¡¾ÕÆÎÕ¡¿
- ͨ¹ýÏÞÖƸߴÎÏîµÄϵÊý½øÐзÀÖ¹¹ýÄâºÏ
- L1ÕýÔò»¯
- Àí½â:Ö±½Ó°Ñ¸ß´ÎÏîÇ°ÃæµÄϵÊý±äΪ0
- Lasso»Ø¹é
- from sklearn.linear_model import Lasso
- L2ÕýÔò»¯
- Àí½â:°Ñ¸ß´ÎÏîÇ°ÃæµÄϵÊý±ä³ÉÌرðСµÄÖµ
- Áë»Ø¹é
2.8 Ä£Ð͵ı£´æºÍ¼ÓÔØ
ѧϰĿ±ê
- ÖªµÀsklearnÖÐÄ£Ð͵ı£´æºÍ¼ÓÔØ
1 sklearnÄ£Ð͵ı£´æºÍ¼ÓÔØAPI
- from sklearn.externals import joblib
- ±£´æ:joblib.dump(estimator, ¡®test.pkl¡¯)
- ¼ÓÔØ:estimator = joblib.load(¡®test.pkl¡¯)
- ×¢Òâ:0.21°æ±¾ÒÔÏ¿ÉÒÔʹÓÃ
sklearn.externals.joblib ,а汾ÐèÒª°²×°joblibpip install joblib ,import joblib
2 ÏßÐԻعéµÄÄ£Ðͱ£´æ¼ÓÔØ°¸Àý
data = load_boston()
x_train, x_test, y_train, y_test = train_test_split(data.data, data.target, random_state=22)
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
estimator = Ridge(alpha=1)
estimator.fit(x_train, y_train)
joblib.dump(estimator, "./data/test.pkl")
estimator = joblib.load("./data/test.pkl")
y_predict = estimator.predict(x_test)
print("Ô¤²âֵΪ:\n", y_predict)
print("Ä£ÐÍÖеÄϵÊýΪ:\n", estimator.coef_)
print("Ä£ÐÍÖеÄÆ«ÖÃΪ:\n", estimator.intercept_)
error = mean_squared_error(y_test, y_predict)
print("Îó²îΪ:\n", error)
3 С½á
- sklearn.externals import joblib¡¾ÖªµÀ¡¿
- ±£´æ:joblib.dump(estimator, ¡®test.pkl¡¯)
- ¼ÓÔØ:estimator = joblib.load(¡®test.pkl¡¯)
- ×¢Òâ:
- 1.±£´æÎļþ,ºó׺ÃûÊÇ**.pkl
- 2.¼ÓÔØÄ£ÐÍÊÇÐèҪͨ¹ýÒ»¸ö±äÁ¿½øÐгнÓ
2.9 ÏßÐԻعéÓ¦ÓÃ-»Ø¹é·ÖÎö
ѧϰĿ±ê
- ÖªµÀÏßÐԻعéµÄ³£¼ûÂäµØ³¡¾°
1¡¢Ê²Ã´Êǻعé·ÖÎö
- »Ø¹éÊÇÑо¿×Ô±äÁ¿x¶ÔÒò±äÁ¿yÓ°ÏìµÄÒ»ÖÖÊý¾Ý·ÖÎö·½·¨
- ×î¼òµ¥µÄ»Ø¹éÄ£ÐÍÊÇÒ»ÔªÏßÐԻعé,¿ÉÒÔ±íʾΪY=¦Â0+¦Â1x+¦Å,ÆäÖÐYΪÒò±äÁ¿,xΪ×Ô±äÁ¿,¦Â1ΪӰÏìϵÊý,¦Â0Ϊ½Ø¾à,¦ÅΪËæ»úÎó²î¡£
- »Ø¹é·ÖÎöÊǹ㷺ӦÓõÄͳ¼Æ·ÖÎö·½·¨,¿ÉÓÃÓÚ·ÖÎö×Ô±äÁ¿ºÍÒò±äÁ¿µÄÓ°Ïì¹Øϵ(ͨ¹ý×Ô±äÁ¿ÇóÒò±äÁ¿),Ò²¿ÉÒÔ·ÖÎö×Ô±äÁ¿¶ÔÒò±äÁ¿µÄÓ°Ïì·½Ïò(ÕýÏòÓ°Ï컹ÊǸºÏòÓ°Ïì)¡£
- »Ø¹é·ÖÎöµÄÖ÷ÒªÓ¦Óó¡¾°ÊǽøÐÐÔ¤²âºÍ¿ØÖÆ,ÀýÈç¼Æ»®Öƶ¨¡¢KPIÖƶ¨¡¢Ä¿±êÖƶ¨µÈ;Ò²¿ÉÒÔ»ùÓÚÔ¤²âµÄÊý¾ÝÓëʵ¼ÊÊý¾Ý½øÐбȶԺͷÖÎö,È·¶¨Ê¼þ·¢Õ¹³Ì¶È²¢¸øδÀ´Ðж¯Ìṩ·½ÏòÐÔÖ¸µ¼¡£
- ³£ÓõĻعéËã·¨°üÀ¨ÏßÐԻع顢¶àÏîʽ»Ø¹éµÈ
- »Ø¹é·ÖÎöµÄÓŵãÊÇÊý¾ÝģʽºÍ½á¹û±ãÓÚÀí½â,ÈçÏßÐԻعéÓÃy=ax+bµÄÐÎʽ±í´ï,ÔÚ½âÊͺÍÀí½â×Ô±äÁ¿ÓëÒò±äÁ¿¹ØϵʽÏà¶ÔÈÝÒ×;ÔÚ»ùÓÚº¯Êý¹«Ê½µÄÒµÎñÓ¦ÓÃÖÐ,¿ÉÒÔÖ±½ÓʹÓôúÈë·¨Çó½â,Òò´ËÓ¦ÓÃÆðÀ´±È½ÏÈÝÒס£
- »Ø¹é·ÖÎöµÄȱµãÊÇÖ»ÄÜ·ÖÎöÉÙÁ¿±äÁ¿Ö®¼äµÄÏ໥¹Øϵ,ÎÞ·¨´¦Àíº£Á¿±äÁ¿¼äµÄÏ໥×÷ÓùØϵ,ÓÈÆäÊDZäÁ¿¹²Í¬ÒòËضÔÒò±äÁ¿µÄÓ°Ïì³Ì¶È¡£
2¡¢»Ø¹é·ÖÎöÂäµØ³¡¾°
- ÔÚ¸÷ÖÖýÌåÉÏͶ·ÅµÄ¹ã¸æ¶Ô×îÖÕÏúÊÛËù²úÉúµÄЧ¹ûÑо¿
- ¹«Ë¾¿ÉÒÔͶÈëµÄÓªÏúÇþµÀ
- ´«Í³´óÖÚýÌå:µçÊÓ ¹ã²¥ »§Íâ¹ã¸æ
- Ö±ÏúýÌå:µç×ÓÓʼþ,¶ÌÐÅ,µç»°
- Êý×ÖýÌå:app ΢ÐÅ Éç½»Ó¦ÓÃ
- ͨ¹ý»Ø¹é·ÖÎö¿ÉÒԻشð
- ²»Í¬ÓªÏúÇþµÀÊÇÈçºÎ´Ù½øÏúÊÛµÄ
- ÈçºÎµ÷ÕûÓªÏú×éºÏʹÿһ·ÝÖ§³ö»ñÈ¡×î´óÊÕÒæ
- ͬʱÔÚ²»Í¬ÇþµÀ½øÐйã¸æÓªÏú,ÄĸöЧ¹û¸üÃ÷ÏÔ
- ÏúÊÛÁ¿ = ÓªÏú±äÁ¿ + Îó²îÒòËØ
- ÓªÏú±äÁ¿ : ¿É¿ØµÄÇþµÀͶÈë
- ÏßÉϲúÆ·:΢Њ΢²© Í·Ìõ
- ´«Í³²úÆ·:µçÉÌ Î¢ÐÅ »§Íâ µçÊÓ
- Îó²îÒòËØ:²»¿É¿ØµÄËùÓÐÒòËØ
- ¾¼Ã´ó»·¾³,¼¾½Ú,¼ÙÆÚ,¶ÔÊÖ
- ÓªÏú±äÁ¿ºÍÏúÊÛÁ¿Ö®¼äÊÇÏßÐÔ¹Øϵ
- ÓªÏúͶÈëÔ½´ó,ÏúÊÛÁ¿Ò²»á¶ÔÓ¦µÄÖð²½Ìá¸ß
- »Ø¹é·ÖÎöÄ£ÐÍ:ÏúÊÛ¶î =93765+0.3* °Ù¶È+0.15 * É罻ýÌå+0.05 *µç»°Ö±Ïú+0.02 * ¶ÌÐÅ
- ÏßÐԻعéÄ£ÐÍ,¼ÙÉè½âÊͱäÁ¿ºÍÒò±äÁ¿Ö®¼äÊÇÏßÐÔ¹Øϵ,µ«Êµ¼ÊÇé¿ö,ÏúÊÛÊÕÈë²»»áËæ׏ã¸æµÄͶÈë¶øÒ»Ö±ÉÏÉý
- ʹÓûعéÄ£Ð͵Ľá¹û,×îÖ÷ÒªµÄ»¹Êǹ۲ì¸÷¸öÒòËصĴóС×öºáÏò¶Ô±È
- »Ø¹é·ÖÎöµÄ½á¹û,×ÅÖØÓÚ²»Í¬X¶ÔÓÚYÓ°ÏìµÄ¶Ô±È,Ö±½ÓÔ¤²âYµÄ³¡¾°½ÏÉÙ
3¡¢»Ø¹é·ÖÎöʵս
-
ÏúÊÛ¶îÔ¤²â·ÖÎö
- ¿ìÏûÆóÒµ,·ÖÎöÄ¿µÄ
- ¶ÔÉ̳¬ÃŵêµÄÏúÊÛ¶î½øÐÐÔ¤²â
- Á¿»¯×ÔÉíËùÄÜ¿ØÖƵĸ÷ÖÖ´ÙÏúÒòËØËùÄܲúÉúµÄЧ¹û
- ¶ÔÓªÏú×ÊÔ´×ö³öºÏÀí¹æ»®
- ´«Í³¿ìÏûÆóÒµ,Êý¾ÝÌصã
- ¾ÛºÏÀàµÄÊý¾Ý
- ÇþµÀÖÚ¶à,ÎÞ·¨¾«×¼Á˽âÓû§
- ±¾ÀýÖÐ,ͨ¹ý»Ø¹é·ÖÎöʵÏÖ¶Ô¸÷ÀàÒòËØͶÈë²ú³ö±È×ö³öÆÀ¹À
- ·ÖÎöÊý¾Ý
- µçÊÓ¹ã¸æ,ÏßÉÏ,ÏßÏÂ,ÃŵêÄÚ,΢ÐÅÇþµÀµÈ´ÙÏúͶÈëºÍÏúÊÛ¶îÖ®¼äµÄ¹Øϵ
- Êý¾Ý˵Ã÷ (ÒÔÔÂΪ¹Û²â´°¿Ú)
- Revenue ÃŵêÏúÊÛ¶î
- Reach ΢ÐŹã¸æ´ÎÊý
- Local_tv ±¾µØµçÊÓ¹ã¸æͶÈë
- Online ÏßÉϹã¸æͶÈë
- Instore ÃŵêÄÚº£±¨µÈͶÈë
- Person Ãŵê´ÙÏúÈËÔ±
- Event ´ÙÏúʼþ
- cobranding Æ·ÅÆÁªºÏ´ÙÏú
- holiday ½Ú¼ÙÈÕ
- special ÃŵêÌرð´ÙÏú
- non-event ÎÞ´ÙÏú»î¶¯
- ·ÖÎöÁ÷³Ì:Êý¾Ý¸Å¿ö·ÖÎö->µ¥±äÁ¿·ÖÎö->Ïà¹ØÐÔ·ÖÎöÓë¿ÉÊÓ»¯->»Ø¹éÄ£ÐÍ
- Êý¾Ý¸Å¿ö·ÖÎö
- µ¥±äÁ¿·ÖÎö
- Êý×ÖÐͱäÁ¿µÄÃèÊöÖ¸±ê(ƽ¾ùÖµ,×î´ó×îСֵ,±ê×¼²î)
- Àà±ðÐͱäÁ¿(¶àÉÙ¸ö·ÖÀà,¸÷×ÔÕ¼±È)
- Ïà¹ØÐÔ·ÖÎöÓë¿ÉÊÓ»¯
- °´Àà±ð½»²æ¶Ô±È
- ±äÁ¿Ö®¼äµÄÏà¹ØÐÔ·ÖÎö
- É¢µãͼ/ÈÈÁ¦Í¼
- »Ø¹é·ÖÎö
- ´úÂë
import pandas as pd
store=pd.read_csv('data/store_rev.csv',index_col=0)
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-Env28gXu-1631190399737)(pics/p&g_regression1.png)]
store.info()
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-1bWVRy7F-1631190399737)(pics/p&g_regression2.png)]
store.isnull().sum()
'''
revenue 0
reach 0
local_tv 56
online 0
instore 0
person 0
event 0
dtype: int64
'''
store.describe()
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-dtR7jUmJ-1631190399738)(pics/p&g_regression3.png)]
store.event.unique()
store.groupby(['event'])['revenue'].describe()
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-cU5M1wHr-1631190399739)(pics/p&g_regression4.png)]
store.groupby(['event'])['local_tv'].describe()
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-Mu28SvwC-1631190399739)(pics/p&g_regression5.png)]
store.corr()
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-yjIWvUKY-1631190399740)(pics/p&g_regression7.png)]
store.corr()[['revenue']].sort_values('revenue',ascending=False)
'''
revenue
revenue 1.000000
local_tv 0.602114
person 0.559208
instore 0.311739
online 0.171227
event_special 0.033752
event_cobranding -0.005623
event_holiday -0.016559
event_non_event -0.019155
reach -0.155314
'''
import seaborn as sns
import matplotlib.pyplot as plt
sns.regplot(x='local_tv',y='revenue',data=store)
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-UKqwBqOB-1631190399741)(pics/p&g_regression8.png)]
sns.regplot(x='person',y='revenue',data=store)
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-xJrACbSX-1631190399742)(pics/p&g_regression9.png)] sns.regplot(x='instore',y='revenue',data=store)
[ÍâÁ´Í¼Æ¬×ª´æʧ°Ü,Ô´Õ¾¿ÉÄÜÓзÀµÁÁ´»úÖÆ,½¨Ò齫ͼƬ±£´æÏÂÀ´Ö±½ÓÉÏ´«(img-fcdcKFnX-1631190399743)(pics/p&g_regression10.png)]
store.dropna(inplace=True)
store=store.fillna(0)
store=store.fillna(store.local_tv.mean())
store.info()
'''
<class 'pandas.core.frame.DataFrame'>
Int64Index: 985 entries, 845 to 26
Data columns (total 10 columns):
revenue 985 non-null float64
reach 985 non-null int64
local_tv 985 non-null float64
online 985 non-null int64
instore 985 non-null int64
person 985 non-null int64
event_cobranding 985 non-null uint8
event_holiday 985 non-null uint8
event_non_event 985 non-null uint8
event_special 985 non-null uint8
dtypes: float64(2), int64(4), uint8(4)
memory usage: 57.7 KB
'''
y=store['revenue']
x=store[['local_tv','person','instore']]
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
x1 = scaler.fit_transform(x)
from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(x1,y)
model.coef_
model.intercept_
y_predict=model.predict(x)
from sklearn.metrics import mean_squared_error
mean_squared_error(y,y_predict)
4 ½á¹û½â¶Á
- ×¢ÒâÓ¦ÓûعéÄ£ÐÍʱÑо¿×Ô±äÁ¿ÊÇ·ñ²úÉú±ä»¯
- ÔÚÓ¦ÓûعéÄ£ÐÍ×öÔ¤²âʱ,±ØÐëÑо¿¶ÔÒò±äÁ¿²úÉúÓ°ÏìµÄ×Ô±äÁ¿ÊÇ·ñ²úÉú±ä»¯,Ö÷Òª¿¼²ìÁ½¸ö·½Ãæ:
- ÊÇ·ñ²úÉúÁËеĶÔÒò±äÁ¿Ó°Ïì¸ü´óµÄ×Ô±äÁ¿
- ÔÚ½¨Á¢»Ø¹éÄ£ÐÍʱ,ÐèÒª×ۺϿ¼ÂÇ×Ô±äÁ¿µÄÑ¡ÔñÎÊÌâ¡£Èç¹ûÒÅ©ÁËÖØÒªµÄ±äÁ¿,ÄÇôģÐͺܿÉÄÜÎÞ·¨ÕýÈ··´Ó³Êµ¼ÊÇé¿ö,¶øÇÒ²ÎÊý¹À¼ÆÊÇÓÐÆ«µÄ,´ËʱµÄ»Ø¹éÄ£Ðͼ«Æä²»Îȶ¨ÇÒ·½²î½Ï´ó¡£
- ͬÑùÔÚÓ¦ÓûعéÄ£ÐÍʱ,ÈÔÈ»ÐèÒªÖØÐÂÆÀ¹À¸ÃÎÊÌâÊÇ·ñ·¢Éú¡£ÀýÈç,ÔÚ×öÓû§¶©µ¥½ð¶îÔ¤²âʱÊÇ»ùÓÚÕý³£ÏúÊÛ״̬ϵıäÁ¿ÊµÏÖµÄ;µ«µ±·¢Éú´óÐÍ´ÙÏú»î¶¯ÇÒ´ÙÏú»î¶¯ÒòËØûÓб»ÄÉÈë»Ø¹éÄ£ÐÍÖÐʱ,ÔÀ´µÄ»Ø¹éÄ£ÐÍÔòÎÞ·¨ÓÐЧԤ²â¡£
- ÔÓÐ×Ô±äÁ¿ÊÇ·ñÈÔÈ»¿ØÖÆÔÚѵÁ·Ä£ÐÍʱµÄ·¶Î§Ö®ÄÚ¡£
Èç¹ûÓÐ×Ô±äÁ¿µÄ±ä»¯³¬¹ýѵÁ·Ä£Ð͵ķ¶Î§,ÄÇôÔÀ´µÄ¾Ñ鹫ʽ¿ÉÄÜÎÞ·¨ÔÚеÄÖµÓò·¶Î§ÏÂÊÊÓÃ,ÕâÖÖÇé¿öÏÂͨ³£ÐèÒªÖØÐÂ×öÑо¿ºÍ½¨Ä£¡£
- ¼ÙÉèÎÒÃǽ¨Á¢ÁËÒ»¸ö»Ø¹éÄ£ÐÍ,¿ÉÒÔ¹ã¸æͶ·Å·ÑÓÃÔ¤²â¹ã¸æµã»÷ÂÊ,ÔÚѵÁ·»Ø¹éÄ£ÐÍʱµÄ¹ã¸æ·ÑÓÃÔÚ[0,1000]Çø¼äÄÚ,µ«ÔÚ¹ã¸æ·ÑÓó¬¹ý1000(ÀýÈç2000)ʱ,ÔòÎÞ·¨±£Ö¤×îÖÕÔ¤²âЧ¹ûµÄÓÐЧÐÔ¡£
- »Ø¹éËã·¨°´ÕÕ×Ô±äÁ¿µÄ¸öÊý·ÖΪһԪ»Ø¹éºÍ¶àÔª»Ø¹é,°´ÕÕÓ°ÏìÊÇ·ñÊÇÏßÐÔ·ÖΪÏßÐԻعéºÍ·ÇÏßÐԻع顣ÔÚÃæ¶Ô²»Í¬»Ø¹é·½·¨µÄÑ¡Ôñʱ,×¢Òâ²Î¿¼ÒÔÏÂÒòËØ:
- ÈëÃŵĿªÊ¼¡ª¡ª¼òµ¥ÏßÐԻع顣Èç¹ûÊÇѧϰΪÖ÷,ÄÇô²»ÐèҪѡÔñ¶àôǿ´óµÄÄ£ÐÍ,»ùÓÚ×îС¶þ³Ë·¨µÄÆÕͨÏßÐԻعé×îºÏÊÊ;ͬʱ,ËüÊʺÏÊý¾Ý¼¯±¾Éí½á¹¹¼òµ¥¡¢·Ö²¼¹æÂÉÓÐÃ÷ÏÔÏßÐÔ¹ØϵµÄ³¡¾°¡£
- Èç¹û×Ô±äÁ¿ÊýÁ¿ÉÙ»ò¾¹ý½µÎ¬ºóµÃµ½ÁË¿ÉÒÔʹÓõĶþά±äÁ¿(°üÀ¨Ô¤²â±äÁ¿),ÄÇô¿ÉÒÔÖ±½Óͨ¹ýÉ¢µãͼ·¢ÏÖ×Ô±äÁ¿ºÍÒò±äÁ¿µÄÏ໥¹Øϵ,È»ºóÑ¡Ôñ×î¼Ñ»Ø¹é·½·¨¡£
- Èç¹û¾¹ý»ù±¾ÅжϷ¢ÏÖ×Ô±äÁ¿¼äÓнÏÇ¿µÄ¹²ÏßÐÔ¹Øϵ,¿ÉÒÔ¿¼ÂÇÁë»Ø¹é¡£
- Èç¹ûÔÚ¸ßά¶È±äÁ¿ÏÂ,ʹÓÃÕýÔò»¯»Ø¹é·½·¨Ð§¹û¸üºÃ,ÀýÈçLasso¡¢Ridge
- Èç¹û×¢ÖØÄ£Ð͵ĿɽâÊÍÐÔ,ÄÇôÈÝÒ×Àí½âµÄÏßÐԻع顢¶àÏîʽ»Ø¹é±È½ÏÊʺϡ£
|