| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 第二周作业:多层感知机 -> 正文阅读 |
|
[人工智能]第二周作业:多层感知机 |
2109060912 模型 过拟合 欠拟合 目标是发现模式,训练集所来自的潜在总体的规律。如何发现可以泛化的模式是机器学习的根本问题。 困难在于,当我们训练模型时,我们只能访问数据中的小部分样本。当我们使用有限的样本时,可能会遇到这样的问题:当收集到更多的数据时,会发现之前找到的明显关系并不成立。 将模型在训练数据上拟合得比在潜在分布中更接近的现象称为过拟合(overfitting),用于对抗过拟合的技术称为正则化(regularization)。如果有足够多的神经元、层数和训练迭代周期,模型最终可以在训练集上达到完美的精度,此时测试集的准确性却下降了。 训练误差和验证误差都很严重,但它们之间仅有一点差距。如果模型不能降低训练误差,这可能意味着我们的模型过于简单(即表达能力不足),无法捕获我们试图学习的模式。由于我们的训练和验证误差之间的泛化误差很小,我们有理由相信可以用一个更复杂的模型降低训练误差。这种现象被称为欠拟合(underfitting)。 另一方面,当我们的训练误差明显低于验证误差时要小心,这表明严重的过拟合(overfitting)。注意,过拟合并不总是一件坏事。特别是在深度学习领域,众所周知,最好的预测模型在训练数据上的表现往往比在保留数据上好得多。最终,我们通常更关心验证误差,而不是训练误差和验证误差之间的差距。 训练误差和泛化误差 训练误差(training error)是指,我们的模型在训练数据集上计算得到的误差。泛化误差(generalization error)是指,当我们将模型应用在同样从原始样本的分布中抽取的无限多的数据样本时,我们模型误差的期望。
多层感知机 我们可以通过在网络中加入一个或多个隐藏层来克服线性模型的限制,使其能处理更普遍的函数关系类型。要做到这一点,最简单的方法是将许多全连接层堆叠在一起。每一层都输出到上面的层,直到生成最后的输出。把最后一层看作线性预测器。这种架构通常称为多层感知机(multilayer perceptron),通常缩写为MLP。 定义一个灵活的程序算法,其输出由许多参数(parameter)决定。 然后我们使用数据集来确定当下的“最佳参数集”,这些参数通过某种性能度量来获取完成任务的最佳性能。 1 从一个随机初始化参数的模型开始,这个模型基本毫不“智能”。 数据操作:1)获取数据;(2)在将数据读入计算机后对其进行处理 ? 感知机是一个二分类模型,是最早的Al模型之一 过拟合 欠拟合 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 17:56:56- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |