IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度学习之基于卷积神经网络实现超大Mnist数据集识别 -> 正文阅读

[人工智能]深度学习之基于卷积神经网络实现超大Mnist数据集识别

在以往的手写数字识别中,数据集一共是70000张图片,模型准确率可以达到99%以上的准确率。而本次实验的手写数字数据集中有120000张图片,而且数据集的预处理方式也是之前没有遇到过的。最终在验证集上的模型准确率达到了99.1%。在模型训练过程中,加入了上一篇文章中提到的早停策略以及模型保存策略。

1.导入库

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import os,PIL,pathlib,warnings,pickle,png

warnings.filterwarnings("ignore")#忽略警告信息

# 支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

2.数据处理

原始数据如下所示:
在这里插入图片描述
这是经过序列化的图片数据,因此需要我们自己反序列化,读入内存中

#将原数据集反序列化,读入到内存中
def unpickle(file):
    with open(file,'rb') as fo:
        dict = pickle.load(fo,encoding='bytes')
    return dict
Qmnist = unpickle("E:/tmp/.keras/datasets/QMnist/MNIST-120k")
data = Qmnist['data']
labels = Qmnist['labels']

读入内存中的数据,需要转化为图片格式,按照它所属的标签,存放到不同的文件夹中。

num = data.shape[0]
#如果不存在文件夹,就新建文件夹
if not os.path.exists('E:/tmp/.keras/datasets/QMnist/dataset'):
    os.mkdir('E:/tmp/.keras/datasets/QMnist/dataset')
for i in range(0,num):
    x = data[i]
    y = str(labels[i])
    name = str(i)
	#二级文件夹,存放0-9不同种类的图片
    if not os.path.exists('E:/tmp/.keras/datasets/QMnist/dataset/{}'.format(y)):
        os.mkdir('E:/tmp/.keras/datasets/QMnist/dataset/{}'.format(y))
#存放图片    png.from_array(x,mode="L").save("E:/tmp/.keras/datasets/QMnist/dataset/{}/{}.png".format(y,name))

最终处理出来的图片数据如下所示:
在这里插入图片描述
其中[4]中的部分图片如下所示:
在这里插入图片描述

3.划分训练集、测试集、验证集

这一部分属于老生常谈的问题了~

data_dir = "E:/tmp/.keras/datasets/QMnist/dataset"
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.png')))
# print(image_count)#120000

all_images_paths = list(data_dir.glob('*'))
all_images_paths = [str(path) for path in all_images_paths]
all_label_names = [path.split("\\")[5].split(".")[0] for path in all_images_paths]
# print(all_label_names)
height = 75
width = 75
batch_size = 8
epochs = 50

train_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1./255,
    validation_split=0.2
)
train_ds = train_data_gen.flow_from_directory(
    directory=data_dir,
    target_size=(height,width),
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical',
    subset='training',
    seed=42
)

validation_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1./255,
    validation_split=0.2
)
val_ds = validation_data_gen.flow_from_directory(
    directory=data_dir,
    target_size=(height,width),
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical',
    subset='validation'
)

test_data_gen = tf.keras.preprocessing.image.ImageDataGenerator(
    rescale=1./255,
    validation_split=0.1
)
test_ds = test_data_gen.flow_from_directory(
    directory=data_dir,
    target_size=(height,width),
    batch_size=batch_size,
    shuffle=True,
    class_mode='categorical',
    subset='validation'
)

经过处理之后,查看图片:

plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds:
    for i in range(40):
        ax = plt.subplot(5, 8, i + 1)
        plt.imshow(images[i])
        plt.title(all_label_names[np.argmax(labels[i])])
        plt.axis("off")
    break
plt.show()

在这里插入图片描述

4.网络搭建

一开始采用的是VGG16模型,但是跑的实在是太慢了,而且不知道哪方面出了问题,准确率很低。

model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(filters=32,kernel_size=(3,3),padding="same",activation="relu",input_shape=[64, 64, 3]),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",activation="relu"),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Conv2D(filters=64,kernel_size=(3,3),padding="same",activation="relu"),
    tf.keras.layers.MaxPooling2D((2,2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(64, activation="relu"),
    tf.keras.layers.Dense(10, activation="softmax")
])

早停策略以及模型保存

Earlystop = tf.keras.callbacks.EarlyStopping(
    monitor='loss',
    mode='min',
    restore_best_weights=True
)
Checkpoint = tf.keras.callbacks.ModelCheckpoint(
    filepath='E:/Users/yqx/PycharmProjects/Qmnist/model.h5',
    save_best_only=True,
    monitor='val_accuracy',
    mode='max'
)

网络编译&&训练

model.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy'])
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs,
    callbacks=[Earlystop,Checkpoint]
)

Accuracy以及Loss图如下所示:
在这里插入图片描述
epochs设置的为50,但是在第7个epoch训练结束后,就停止了,实现了早停策略。

5.模型测试&&混淆矩阵

模型加载:

model = tf.keras.models.load_model('cloud/model.h5')

对测试集进行模型测试:

model.evaluate(test_ds)

最终结果如下所示:

1500/1500 [==============================] - 9s 6ms/step - loss: 0.0469 - accuracy: 0.9912
[0.046884261071681976, 0.9911637306213379]

绘制混淆矩阵:

from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
import seaborn as sns

pred = model.predict(test_ds).argmax(axis=1)
labels = list(train_ds.class_indices.keys())

cm = confusion_matrix(test_data.classes, pred)
plt.figure(figsize=(15,10))
sns.heatmap(cm, annot=True, fmt='g', xticklabels=labels, yticklabels=labels, cmap="BuPu")
plt.title('Confusion Matrix')
plt.show()

在这里插入图片描述
努力加油a啊

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-09-13 09:16:52  更:2021-09-13 09:18:56 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 17:59:19-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码