1、反向传播
????????先进行前馈运算(forward),然后反向传播算出损失函数对权重的倒数(即梯度),进而可以进行更新权重w。

?

?
import torch
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
w = torch.Tensor([1.0])
w.requires_grad = True # 计算梯度
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y) ** 2
print('predict (before tarining)', 4, forward(4).item())
for i in range(100):
for x, y in zip(x_data, y_data):
ls = loss(x, y)
ls.backward()
w.data=w.data-0.01*w.grad.data
w.grad.data.zero_()
print("progress:",i,ls.item())
print('predict (after training)',4,forward(4).item())
|