大家好,我是『K同学啊』!
今天我将带大家探索一下深度学习在医学领域的应用,乳腺癌是女性最常见的癌症形式,浸润性导管癌 (IDC) 是最常见的乳腺癌形式。准确识别和分类乳腺癌亚型是一项重要的临床任务,利用深度学习方法识别可以有效节省时间并减少错误。 我们的数据集是由多张以 40 倍扫描的乳腺癌 (BCa) 标本的完整载玻片图像组成。
🚀 我的环境:
- 语言环境:Python3.6.5
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.4.1
- 数据和代码:📌【传送门】
🚀 来自专栏:《深度学习100例》
如果你是一名深度学习小白可以先看看我这个专门为你写的专栏:《小白入门深度学习》
- 小白入门深度学习 | 第一篇:配置深度学习环境
- 小白入门深度学习 | 第二篇:编译器的使用-Jupyter Notebook
- 小白入门深度学习 | 第三篇:深度学习初体验
- 小白入门深度学习 | 第四篇:配置PyTorch环境
🚀 往期精彩-卷积神经网络篇:
- 深度学习100例-卷积神经网络(CNN)实现mnist手写数字识别 | 第1天
- 深度学习100例-卷积神经网络(CNN)彩色图片分类 | 第2天
- 深度学习100例-卷积神经网络(CNN)服装图像分类 | 第3天
- 深度学习100例-卷积神经网络(CNN)花朵识别 | 第4天
- 深度学习100例-卷积神经网络(CNN)天气识别 | 第5天
- 深度学习100例-卷积神经网络(VGG-16)识别海贼王草帽一伙 | 第6天
- 深度学习100例-卷积神经网络(VGG-19)识别灵笼中的人物 | 第7天
- 深度学习100例-卷积神经网络(ResNet-50)鸟类识别 | 第8天
- 深度学习100例-卷积神经网络(AlexNet)手把手教学 | 第11天
- 深度学习100例-卷积神经网络(CNN)识别验证码 | 第12天
- 深度学习100例-卷积神经网络(Inception V3)识别手语 | 第13天
- 深度学习100例-卷积神经网络(Inception-ResNet-v2)识别交通标志 | 第14天
- 深度学习100例-卷积神经网络(CNN)实现车牌识别 | 第15天
- 深度学习100例-卷积神经网络(CNN)识别神奇宝贝小智一伙 | 第16天
- 深度学习100例-卷积神经网络(CNN)注意力检测 | 第17天
- 深度学习100例-卷积神经网络(VGG-16)猫狗识别 | 第21天
- 深度学习100例-卷积神经网络(LeNet-5)深度学习里的“Hello Word” | 第22天
- 深度学习100例-卷积神经网络(CNN)3D医疗影像识别 | 第23天
- 深度学习100例 | 第24天-卷积神经网络(Xception):动物识别
- 深度学习100例 | 第25天-卷积神经网络(Xception):中文手写数字识别
🚀 往期精彩-循环神经网络篇:
- 深度学习100例-循环神经网络(RNN)实现股票预测 | 第9天
- 深度学习100例-循环神经网络(LSTM)实现股票预测 | 第10天
🚀 往期精彩-生成对抗网络篇:
- 深度学习100例-生成对抗网络(GAN)手写数字生成 | 第18天
- 深度学习100例-生成对抗网络(DCGAN)手写数字生成 | 第19天
- 深度学习100例-生成对抗网络(DCGAN)生成动漫小姐姐 | 第20天
一、设置GPU
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0]
tf.config.experimental.set_memory_growth(gpu0, True)
tf.config.set_visible_devices([gpu0],"GPU")
import matplotlib.pyplot as plt
import os,PIL,pathlib
import numpy as np
import pandas as pd
import warnings
from tensorflow import keras
warnings.filterwarnings("ignore")
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
二、导入数据
1. 导入数据
import pathlib
data_dir = "./32-data"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)
图片总数为: 13403
batch_size = 16
img_height = 50
img_width = 50
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 13403 files belonging to 2 classes.
Using 10723 files for training.
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.2,
subset="validation",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 13403 files belonging to 2 classes.
Using 2680 files for validation.
class_names = train_ds.class_names
print(class_names)
['0', '1']
2. 检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
(16, 50, 50, 3)
(16,)
3. 配置数据集
- shuffle() : 打乱数据,关于此函数的详细介绍可以参考:https://zhuanlan.zhihu.com/p/42417456
- prefetch() : 预取数据,加速运行,其详细介绍可以参考我前两篇文章,里面都有讲解。
- cache() : 将数据集缓存到内存当中,加速运行
AUTOTUNE = tf.data.AUTOTUNE
def train_preprocessing(image,label):
return (image/255.0,label)
train_ds = (
train_ds.cache()
.shuffle(1000)
.map(train_preprocessing)
.prefetch(buffer_size=AUTOTUNE)
)
val_ds = (
val_ds.cache()
.shuffle(1000)
.map(train_preprocessing)
.prefetch(buffer_size=AUTOTUNE)
)
4. 数据可视化
plt.figure(figsize=(10, 8))
plt.suptitle("数据展示")
class_names = ["乳腺癌细胞","正常细胞"]
for images, labels in train_ds.take(1):
for i in range(15):
plt.subplot(4, 5, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(images[i])
plt.xlabel(class_names[labels[i]-1])
plt.show()
三、构建模型
import tensorflow as tf
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu",input_shape=[img_width, img_height, 3]),
tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),
tf.keras.layers.MaxPooling2D((2,2)),
tf.keras.layers.Dropout(0.5),
tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),
tf.keras.layers.MaxPooling2D((2,2)),
tf.keras.layers.Conv2D(filters=16,kernel_size=(3,3),padding="same",activation="relu"),
tf.keras.layers.MaxPooling2D((2,2)),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(2, activation="softmax")
])
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 50, 50, 16) 448
_________________________________________________________________
conv2d_1 (Conv2D) (None, 50, 50, 16) 2320
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 25, 25, 16) 0
_________________________________________________________________
dropout (Dropout) (None, 25, 25, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 25, 25, 16) 2320
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 12, 12, 16) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 12, 12, 16) 2320
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 6, 6, 16) 0
_________________________________________________________________
flatten (Flatten) (None, 576) 0
_________________________________________________________________
dense (Dense) (None, 2) 1154
=================================================================
Total params: 8,562
Trainable params: 8,562
Non-trainable params: 0
_________________________________________________________________
四、编译
model.compile(optimizer="adam",
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
五、训练模型
from tensorflow.keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler
NO_EPOCHS = 100
PATIENCE = 5
VERBOSE = 1
annealer = LearningRateScheduler(lambda x: 1e-3 * 0.99 ** (x+NO_EPOCHS))
earlystopper = EarlyStopping(monitor='loss', patience=PATIENCE, verbose=VERBOSE)
checkpointer = ModelCheckpoint('best_model.h5',
monitor='val_accuracy',
verbose=VERBOSE,
save_best_only=True,
save_weights_only=True)
train_model = model.fit(train_ds,
epochs=NO_EPOCHS,
verbose=1,
validation_data=val_ds,
callbacks=[earlystopper, checkpointer, annealer])
Epoch 1/100
671/671 [==============================] - 6s 5ms/step - loss: 0.5599 - accuracy: 0.7103 - val_loss: 0.4927 - val_accuracy: 0.7537
Epoch 00001: val_accuracy improved from -inf to 0.75373, saving model to best_model.h5
Epoch 2/100
671/671 [==============================] - 3s 4ms/step - loss: 0.4434 - accuracy: 0.8032 - val_loss: 0.5748 - val_accuracy: 0.7037
......
Epoch 00098: val_accuracy did not improve from 0.91381
Epoch 99/100
671/671 [==============================] - 3s 4ms/step - loss: 0.2091 - accuracy: 0.9149 - val_loss: 0.2311 - val_accuracy: 0.9134
Epoch 00099: val_accuracy did not improve from 0.91381
Epoch 100/100
671/671 [==============================] - 3s 4ms/step - loss: 0.2073 - accuracy: 0.9132 - val_loss: 0.2269 - val_accuracy: 0.9138
Epoch 00100: val_accuracy did not improve from 0.91381
六、评估模型
1. Accuracy与Loss图
acc = train_model.history['accuracy']
val_acc = train_model.history['val_accuracy']
loss = train_model.history['loss']
val_loss = train_model.history['val_loss']
epochs_range = range(len(acc))
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
2. 混淆矩阵
from sklearn.metrics import confusion_matrix
import seaborn as sns
import pandas as pd
def plot_cm(labels, predictions):
conf_numpy = confusion_matrix(labels, predictions)
conf_df = pd.DataFrame(conf_numpy, index=class_names ,columns=class_names)
plt.figure(figsize=(8,7))
sns.heatmap(conf_df, annot=True, fmt="d", cmap="BuPu")
plt.title('混淆矩阵',fontsize=15)
plt.ylabel('真实值',fontsize=14)
plt.xlabel('预测值',fontsize=14)
val_pre = []
val_label = []
for images, labels in val_ds:
for image, label in zip(images, labels):
img_array = tf.expand_dims(image, 0)
prediction = model.predict(img_array)
val_pre.append(class_names[np.argmax(prediction)])
val_label.append(class_names[label])
plot_cm(val_label, val_pre)
3. 各项指标评估
from sklearn import metrics
def test_accuracy_report(model):
print(metrics.classification_report(val_label, val_pre, target_names=class_names))
score = model.evaluate(val_ds, verbose=0)
print('Loss function: %s, accuracy:' % score[0], score[1])
test_accuracy_report(model)
precision recall f1-score support
乳腺癌细胞 0.92 0.90 0.91 1339
正常细胞 0.91 0.92 0.91 1341
accuracy 0.91 2680
macro avg 0.91 0.91 0.91 2680
weighted avg 0.91 0.91 0.91 2680
Loss function: 0.22688131034374237, accuracy: 0.9138059616088867
🚀 本文选自专栏:《深度学习100例》
💖先赞后看,再收藏,养成好习惯!💖
|