试验四:
import numpy as np
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class DiabetesDataset(Dataset):
def __init__(self, filepath):
xy = np.loadtxt(filepath, delimiter=',', dtype=np.float32)
self.len = xy.shape[0]
self.x_data = torch.from_numpy(xy[:,:-1])
selg.y_data = torch.from_numpy(xy[:,[-1]])
def __getitem__(self, index):
return x_data[index], y_data[index]
def __len__(self):
return self.len
dataset = DiabetesDataset('diabetes.csv.gz')
train_load = DataLoader(dataset = dataset, batch_size = 32, shuffle = True, num_workers = 2)
class Model(torch.nn.Module):
del __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
del forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
if __name__=='__main__':
for epoch in range(100):
for i, data in enumerate(train_load, 0):
inputs, label = data
y_pred = model(inputs)
loss = criterion(y_pred, label)
print (epoch, i, loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
试验五:
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307, ), (0.3081, ))
])
train_dataset = datasets.MNIST(root = './dataset',
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = nn.Linear(784, 512)
self.l2 = nn.Linear(512, 256)
self.l3 = nn.Linear(256, 128)
self.l4 = nn.Linear(128, 64)
self.l5 = nn.Linear(64, 10)
def forward(self,x):
x = x.view(-1, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_size % 300 == 299:
print ('[%d, %5d] loss: %.3f' %(epoch + 1, batch_size + 1, running_loss/300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, label = data
outputs = model(images)
_, predict = torch.max(outputs.data, dim=1)
total += label.size(0)
correct += (predict==label).sum().item()
print ('Accuracy on test set: %d %%' %(100*correct/total))
if __name__=='__main__':
for epoch in range(10):
train(epoch)
test()
试验六:
import torch
in_channels, out_channels = 5, 10
width, height = 100, 100
kernel_size = 3
batch_size = 1
input = torch.randn(batch_size,
in_channels,
width,
height)
conv_layer = torch.nn.Conv2d(in_channels,
out_channels,
kernel_size = kernel_size)
output = conv_layer(input)
print (input.shape)
print (output.shape)
print (conv_layer.weight.shape)
|