IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Python图像处理之二值图像腐蚀 -> 正文阅读

[人工智能]Python图像处理之二值图像腐蚀

1 引言

形态学运算是针对二值图像依据数学形态学集合论方法发展起来的图像处理的方法.其主要内容是设计一整套的变换概念和算法,用以描述图像的基本特征.
在图像处理中,形态学的应用主要有以下两点:利用形态学的基本运算,对图像进行观察和处理,从而达到改善图像质量的目的;描述和定义图像的各种几何参数和特征等.

2 腐蚀概念

数学形态学的运算以腐蚀和膨胀这两种基本运算为基础,腐蚀操作在数学形态学上的作用是消除物体的边界点,使边界向内部收缩的过程,主要用于将小于物体结构元素的物体去除.例如两个物体之间有细小的连通,可以通过腐蚀操作将两个物体分开.腐蚀的数学表达式为:
在这里插入图片描述上述公式中:

  • S表示腐蚀后的二值图像
  • B表示用来进行腐蚀操作的结构元素,结构元素内每一个元素取值为0或1,它可以组成任何一种形状的图形;
  • X表示原图经过二值化后的像素集合.

此公式的含义是用B来腐蚀X得到的集合S,S是由B完全包括在X中时B的当前位置的集合.

3 举个栗子

只看上面公式,是不是有种云里雾里的感觉,那我们不妨来举个栗子说明一下,请看下图:
在这里插入图片描述

  • 左侧a为被处理的二值图像,白色部分表示背景,灰色部分表示目标X;
  • 中间为结构元素B,黑色点为结构元素的中心点,灰色的方格表示邻域;
  • 右侧c中黑色的部分表示腐蚀后的结果,灰色的部分表示目标图像被腐蚀掉的部分.

我们可以这样理解上述腐蚀过程,即用B的中心点和X上的点一个一个地对比,如果B上所有对应的点都在X的范围内,则该点保留;否则将该点去除;
通俗的讲就是将结构元素在图像中移动,如果结构元素完全包含在目标图像X中,则保留目标图像中对应于中心点的像素点,否则删除该像素点.

4 水平腐蚀

4.1 理论基础

图像腐蚀操作按照所采用的结构元素的类型,可以分为以下三类:水平腐蚀垂直腐蚀以及全方向腐蚀.其中水平腐蚀所采用的结构元素为[0,0,0], 其具体实现步骤如下:

  • 根据原始图像的宽和高,初始化结果图为全白图(背景为白色)
  • 由于我们采用的是横向腐蚀操作,结构元素为1X3,因此我们不处理最左边和最右边的两列像素,从第2行第2列开始,逐个遍历每行元素,判断该元素的前一个像素和后一个像素是否含有背景点,有则说明在结果图上该点需要被腐蚀掉,将该点像素点的灰度值赋值为255,否则保持不变
  • 循环上述步骤,直至处理完原图所有像素点。

4.2 代码实现

使用python实现按上述过程,核心代码如下:

def horizon_erode(bin_img):
    out_img = np.zeros(shape=bin_img.shape, dtype=np.uint8) + 255
    h = bin_img.shape[0]
    w = bin_img.shape[1]
    for i in range(h):
        for j in range(1,w-1):
            out_img[i][j]=0
            for k in range(3):
                if bin_img[i][j+k-1] > 127:
                    out_img[i][j]=255
    return out_img

运行结果如下:
请添加图片描述
上图中,从左往右依次为彩色原图,二值化后的结果图,以及采用水平腐蚀后的效果图,可以看到腐蚀后的图相比二值图外围在纵向上被腐蚀掉一圈。

5 垂直腐蚀

5.1 理论基础

垂直腐蚀和水平腐蚀原理类似,只是所采用的结构元素不同,垂直腐蚀所使用的结构元素为 [ 0 , 0 , 0 ] T [0,0,0]^T [0,0,0]T,其详细的实现步骤如下:

  • 根据原始图像的宽和高,初始化结果图为全白图(背景为白色)
  • 由于我们采用的是垂直腐蚀操作,结构元素为3X1,因此我们不处理最上边和最下边的两行像素,从第2行第2列开始,逐个遍历每行元素,判断该元素的上一个像素和下一个像素是否含有背景点,有则说明在结果图上该点需要被腐蚀掉,将该点像素点的灰度值赋值为255,否则保持不变
  • 循环上述步骤,直至处理完原图所有像素点。

5.2 代码实现

使用python实现按上述过程,核心代码如下:

def vertical_erode(bin_img):
    out_img = np.zeros(shape=bin_img.shape, dtype=np.uint8) + 255
    h = bin_img.shape[0]
    w = bin_img.shape[1]
    for i in range(1,h-1):
        for j in range(w):
            out_img[i][j]=0
            for k in range(3):
                if bin_img[i+k-1][j] > 127:
                    out_img[i][j]=255
    return out_img

运行结果如下:
请添加图片描述

上图中,从左往右依次为彩色原图,二值化后的结果图,以及采用垂直腐蚀后的效果图,可以看到腐蚀后的图相比二值图在横向上被腐蚀掉一圈。

6 全方向腐蚀

6.1 理论基础

全方向腐蚀综合了垂直腐蚀和水平腐蚀,所采用的结构元素为十字形,全向腐蚀的一般实现步骤如下:

  • 根据原始图像的宽和高,初始化结果图为全白图(背景为白色)

  • 全向腐蚀包含垂直腐蚀和水平腐蚀,这里我们采用3X3的结构元素,如下所示:
    在这里插入图片描述

  • 为防止越界,我们不处理最上边、最右边、最下边和最左边共四边的元素,从第2行第2列开始,逐个遍历每个元素,判断该元素的上一个像素 下一个像素 前一个像素 以及后一个像素这四个位置(即数组中除中心点外,四个为0的位置)中是否含有背景点,有则说明在结果图上该点需要被腐蚀掉,将该点像素点的灰度值赋值为255,否则保持不变。当然也可以定义不同形状的结构元素B来进行不同的腐蚀效果,但处理方法都是检查B中所对应的像素点是否全部为物体,是则保留该点,否则置为255.

  • 循环上述步骤,直至处理完原图所有像素点。

6.2 代码实现

使用python实现按上述过程,核心代码如下:

def all_erode(bin_img):
    out_img = np.zeros(shape=bin_img.shape, dtype=np.uint8) + 255
    h = bin_img.shape[0]
    w = bin_img.shape[1]
    B=[1,0,1,0,0,0,1,0,1]
    for i in range(1,h-1):
        for j in range(1,w-1):
            out_img[i][j]=0
            for m in range(3):
                for n in range(3):
                    if B[m*3+n] == 1:
                        continue
                    if bin_img[i+m-1][j+n-1] > 127:
                        out_img[i][j]=255
    return out_img

运行结果如下:
请添加图片描述
上图中,从左往右依次为彩色原图,二值化后的结果图,以及采用垂直腐蚀后的效果图,可以看到腐蚀后的图相比二值图在横向和纵向上都被腐蚀掉一圈。

7 总结

通过上述简单步骤,我们实现了二值图像水平腐蚀垂直腐蚀以及全向腐蚀,并给出了完整代码实例。

您学废了吗?

关注公众号《AI算法之道》,获取更多AI算法资讯。
在这里插入图片描述

注:关注公众号号,后台回复 腐蚀 ,即可获得完整代码。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-09-19 07:59:01  更:2021-09-19 07:59:32 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 16:42:23-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码