| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 机器学习03--(K近邻KNN算法) -> 正文阅读 |
|
[人工智能]机器学习03--(K近邻KNN算法) |
K近邻法(KNN)介绍1. k k k近邻法是基本且简单的分类与回归方法。 k k k近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 k k k个最近邻训练实例点,然后利用这 k k k个训练实例点的类的多数来预测输入实例点的类。 2. k k k近邻模型对应于基于训练数据集对特征空间的一个划分。 k k k近邻法中,当训练集、距离度量、 k k k值及分类决策规则确定后,其结果唯一确定。 3. k k k近邻法三要素:距离度量、 k k k值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。 k k k值小时, k k k近邻模型更复杂; k k k值大时, k k k近邻模型更简单。 k k k值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的 k k k。 常用的分类决策规则是多数表决,对应于经验风险最小化。 4. k k k近邻法的实现需要考虑如何快速搜索k个最近邻点。kd树是一种便于对k维空间中的数据进行快速检索的数据结构。kd树是二叉树,表示对 k k k维空间的一个划分,其每个结点对应于 k k k维空间划分中的一个超矩形区域。利用kd树可以省去对大部分数据点的搜索, 从而减少搜索的计算量。 距离度量设特征空间 x x x是 n n n维实数向量空间 , x i , x j ∈ X x_{i}, x_{j} \in \mathcal{X} xi?,xj?∈X, x i = ( x i ( 1 ) , x i ( 2 ) , ? ? , x i ( n ) ) T x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(n)}\right)^{\mathrm{T}} xi?=(xi(1)?,xi(2)?,?,xi(n)?)T, x j = ( x j ( 1 ) , x j ( 2 ) , ? ? , x j ( n ) ) T x_{j}=\left(x_{j}^{(1)}, x_{j}^{(2)}, \cdots, x_{j}^{(n)}\right)^{\mathrm{T}} xj?=(xj(1)?,xj(2)?,?,xj(n)?)T ,则: x i x_i xi?, x j x_j xj?的 L p L_p Lp?距离定义为: L p ( x i , x j ) = ( ∑ i = 1 n ∣ x i ( i ) ? x j ( l ) ∣ p ) 1 p L_{p}\left(x_{i}, x_{j}\right)=\left(\sum_{i=1}^{n}\left|x_{i}^{(i)}-x_{j}^{(l)}\right|^{p}\right)^{\frac{1}{p}} Lp?(xi?,xj?)=(∑i=1n?∣∣∣?xi(i)??xj(l)?∣∣∣?p)p1?
p
=
1
p= 1
p=1 曼哈顿距离 原生代码实现KNN算法:
效果: sklearn框架实现KNN:
KD树kd树是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。 kd树是二叉树,表示对 k k k维空间的一个划分(partition)。构造kd树相当于不断地用垂直于坐标轴的超平面将 k k k维空间切分,构成一系列的k维超矩形区域。kd树的每个结点对应于一个 k k k维超矩形区域。 构造平衡kd树算法输入: k k k维空间数据集 T = { x 1 , x 2 , … , x N } T=\{x_1,x_2,…,x_N\} T={x1?,x2?,…,xN?}, 其中 x i = ( x i ( 1 ) , x i ( 2 ) , ? ? , x i ( k ) ) T x_{i}=\left(x_{i}^{(1)}, x_{i}^{(2)}, \cdots, x_{i}^{(k)}\right)^{\mathrm{T}} xi?=(xi(1)?,xi(2)?,?,xi(k)?)T , i = 1 , 2 , … , N i=1,2,…,N i=1,2,…,N; 输出:kd树。 (1)开始:构造根结点,根结点对应于包含 T T T的 k k k维空间的超矩形区域。 选择 x ( 1 ) x^{(1)} x(1)为坐标轴,以T中所有实例的 x ( 1 ) x^{(1)} x(1)坐标的中位数为切分点,将根结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现。 由根结点生成深度为1的左、右子结点:左子结点对应坐标 x ( 1 ) x^{(1)} x(1)小于切分点的子区域, 右子结点对应于坐标 x ( 1 ) x^{(1)} x(1)大于切分点的子区域。 将落在切分超平面上的实例点保存在根结点。 (2)重复:对深度为 j j j的结点,选择 x ( 1 ) x^{(1)} x(1)为切分的坐标轴, l = j ( m o d k ) + 1 l=j(modk)+1 l=j(modk)+1,以该结点的区域中所有实例的 x ( 1 ) x^{(1)} x(1)坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并与坐标轴 x ( 1 ) x^{(1)} x(1)垂直的超平面实现。 由该结点生成深度为 j + 1 j+1 j+1的左、右子结点:左子结点对应坐标 x ( 1 ) x^{(1)} x(1)小于切分点的子区域,右子结点对应坐标 x ( 1 ) x^{(1)} x(1)大于切分点的子区域。 将落在切分超平面上的实例点保存在该结点。 (3)直到两个子区域没有实例存在时停止。从而形成kd树的区域划分。 End!更多内容请参考Github仓库:点击进入 |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 17:05:54- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |