IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> tensorflow标签向量化 -> 正文阅读

[人工智能]tensorflow标签向量化

有时候在处理数据的时候,必须将标签转换为张量,才能使用tensorflow的框架
方法1.将标签列表转换为整数张量

import numpy as np
def vectorize_sequences(sequences, dimension=10000):
	 results = np.zeros((len(sequences), dimension))
	 for i, sequence in enumerate(sequences):
		 results[i, sequence] = 1.
	 return results
	 
x_train = vectorize_sequences(train_data) 
x_test = vectorize_sequences(test_data) 

方法2.one-hot 编码。
one-hot 编码是分类数据广泛使用的一种格式,也叫分类编码(categorical encoding)

def to_one_hot(labels, dimension=46):
	 results = np.zeros((len(labels), dimension))
	 for i, label in enumerate(labels):
		 results[i, label] = 1.
	 return results
	 
	one_hot_train_labels = to_one_hot(train_labels) 
	one_hot_test_labels = to_one_hot(test_labels) 
	
直接调库(等效以上方法)

from keras.utils.np_utils import to_categorical
one_hot_train_labels = to_categorical(train_labels)
one_hot_test_labels = to_categorical(test_labels)

方法3.就是将其转换为整数张量。

y_train = np.array(train_labels)
y_test = np.array(test_labels)

对于这种编码方法,唯一需要改变的是损失函数的选择。函数categorical_crossentropy,标签应该遵循分类编码。对于整数标签,你应该使用sparse_categorical_crossentropy。

model.compile(optimizer=‘rmsprop’,
loss=‘sparse_categorical_crossentropy’,
metrics=[‘acc’])
这个新的损失函数在数学上与 categorical_crossentropy 完全相同,二者只是接口不同。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-09-19 07:59:01  更:2021-09-19 08:01:19 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 16:45:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码