IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 激活函数汇总,包含公式、求导过程以及numpy实现,妥妥的万字干货 -> 正文阅读

[人工智能]激活函数汇总,包含公式、求导过程以及numpy实现,妥妥的万字干货

1、激活函数的实现

1.1 sigmoid

1.1.1 函数

函数: f ( x ) = 1 1 + e ? x f(x)=\frac{1}{1+e^{-x}} f(x)=1+e?x1?

img

1.1.2 导数

求导过程:

根据: ( u v ) ′ = u ′ v ? u v ′ v 2 \left ( \frac{u}{v} \right ){}'=\frac{{u}'v-u{v}'}{v^{2}} (vu?)=v2uv?uv?
f ( x ) ′ = ( 1 1 + e ? x ) ′ = 1 ′ × ( 1 + e ? x ) ? 1 × ( 1 + e ? x ) ′ ( 1 + e ? x ) 2 = e ? x ( 1 + e ? x ) 2 = 1 + e ? x ? 1 ( 1 + e ? x ) 2 = ( 1 1 + e ? x ) ( 1 ? 1 1 + e ? x ) = f ( x ) ( 1 ? f ( x ) ) \begin{aligned} f(x)^{\prime} &=\left(\frac{1}{1+e^{-x}}\right)^{\prime} \\ &=\frac{1^{\prime} \times\left(1+e^{-x}\right)-1 \times\left(1+e^{-x}\right)^{\prime}}{\left(1+e^{-x}\right)^{2}} \\ &=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}} \\ &=\frac{1+e^{-x}-1}{\left(1+e^{-x}\right)^{2}} \\ &=\left(\frac{1}{1+e^{-x}}\right)\left(1-\frac{1}{1+e^{-x}}\right) \\ &=\quad f(x)(1-f(x)) \end{aligned} f(x)?=(1+e?x1?)=(1+e?x)21×(1+e?x)?1×(1+e?x)?=(1+e?x)2e?x?=(1+e?x)21+e?x?1?=(1+e?x1?)(1?1+e?x1?)=f(x)(1?f(x))?

img

1.1.3 代码实现

import numpy as np

class Sigmoid():
    def __call__(self, x):
        return 1 / (1 + np.exp(-x))

    def gradient(self, x):
        return self.__call__(x) * (1 - self.__call__(x))

1.2 softmax

1.2.1 函数

softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是:
S i = e i ∑ j e j S_{i}=\frac{e^{i}}{\sum _{j}e^{j}} Si?=j?ejei?
更形象的如下图表示:

1180120-20180520190635891-1537309048
y 1 = e z 1 e z 1 + e z 2 + e z 3 y 2 = e z 2 e z 1 + e z 2 + e z 3 y 3 = e z 3 e z 1 + e z 2 + e z 3 (1) y1=\frac{e^{z_{1}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}\\ y2=\frac{e^{z_{2}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}\\ y3=\frac{e^{z_{3}}}{e^{z_{1}}+e^{z_{2}}+e^{z_{3}}}\\ \tag{1} y1=ez1?+ez2?+ez3?ez1??y2=ez1?+ez2?+ez3?ez2??y3=ez1?+ez2?+ez3?ez3??(1)
要使用梯度下降,就需要一个损失函数,一般使用交叉熵作为损失函数,交叉熵函数形式如下:
L o s s = ? ∑ i y i l n a i (2) Loss = -\sum_{i}^{}{y_{i}lna_{i} } \tag{2} Loss=?i?yi?lnai?(2)

1.2.2 导数

求导分为两种情况。

第一种j=i:
S i = e i ∑ j e j = e i ∑ i e i S_{i}=\frac{e^{i}}{\sum _{j}e^{j}}=\frac{e^{i}}{\sum _{i}e^{i}} Si?=j?ejei?=i?eiei?
推导过程如下:
f ′ = ( e i ∑ i e i ) ′ = ( e i ) × ∑ i e i ? e i × e i ( ∑ i e i ) 2 = e i ∑ i e i ? e i ∑ i e i × e i ∑ i e i = e i ∑ i e i ( 1 ? e i ∑ i e i ) = f ( 1 ? f ) \begin{aligned} f^{\prime}&=\left(\frac{e^{i}}{\sum_{i} e^{i}}\right)^{\prime} & \\ &=\frac{\left(e^{i}\right) \times \sum_{i} e^{i}-e^{i} \times e^{i}}{\left(\sum_{i} e^{i}\right)^{2}} \\ &=\frac{e^{i}}{\sum_{i} e^{i}}-\frac{e^{i}}{\sum_{i} e^{i}} \times \frac{e^{i}}{\sum_{i} e^{i}} \\ &= \frac{e^{i}}{\sum_{i} e^{i}}\left(1-\frac{e^{i}}{\sum_{i} e^{i}}\right) \\ &= f(1-f) \end{aligned} f?=(i?eiei?)=(i?ei)2(ei)×i?ei?ei×ei?=i?eiei??i?eiei?×i?eiei?=i?eiei?(1?i?eiei?)=f(1?f)?

1.2.3 代码实现

import numpy as np
class Softmax():
    def __call__(self, x):
        e_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
        return e_x / np.sum(e_x, axis=-1, keepdims=True)

    def gradient(self, x):
        p = self.__call__(x)
        return p * (1 - p)

1.3 tanh

1.3.1 函数

t a n h ( x ) = e x ? e ? x e x + e ? x tanh(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} tanh(x)=ex+e?xex?e?x?

img

1.3.2 导数

求导过程:
tanh ? ( x ) ′ = ( e x ? e ? x e x + e ? x ) ′ = ( e x ? e ? x ) ′ ( e x + e ? x ) ? ( e x ? e ? x ) ( e x + e ? x ) ′ ( e x + e ? x ) 2 = ( e x + e ? x ) 2 ? ( e x ? e ? x ) 2 ( e x + e ? x ) 2 = 1 ? ( e x ? e ? x e x + e ? x ) 2 = 1 ? tanh ? ( x ) 2 \begin{aligned} \tanh (x)^{\prime} &=\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{\prime} \\ &=\frac{\left(e^{x}-e^{-x}\right)^{\prime}\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}+e^{-x}\right)^{\prime}}{\left(e^{x}+e^{-x}\right)^{2}} \\ &=\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x} \cdot e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}} \\ &=1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2} \\ &=1-\tanh (x)^{2} \end{aligned} tanh(x)?=(ex+e?xex?e?x?)=(ex+e?x)2(ex?e?x)(ex+e?x)?(ex?e?x)(ex+e?x)?=(ex+e?x)2(ex+e?x)2?(ex?e?x)2?=1?(ex+e?xex?e?x?)2=1?tanh(x)2?

1.3.3 代码实现

import numpy as np
class TanH():
    def __call__(self, x):
        return 2 / (1 + np.exp(-2*x)) - 1

    def gradient(self, x):
        return 1 - np.power(self.__call__(x), 2)

1.4 relu

1.4.1 函数

f ( x ) = max ? ( 0 , x ) f(x)=\max (0, x) f(x)=max(0,x)

1.4.2 导数

f ′ ( x ) = { 1 ?if? ( x > 0 ) 0 ?if? ( x < = 0 ) f^{\prime}(x)=\left\{\begin{array}{cc} 1 & \text { if } (x>0) \\ 0 & \text { if } (x<=0) \end{array}\right. f(x)={10??if?(x>0)?if?(x<=0)?

1.4.3 代码实现

import numpy as np
class ReLU():
    def __call__(self, x):
        return np.where(x >= 0, x, 0)

    def gradient(self, x):
        return np.where(x >= 0, 1, 0)

1.5 leakyrelu

1.5.1 函数

f ( x ) = max ? ( a x , x ) f(x)=\max (a x, x) f(x)=max(ax,x)

1.5.2 导数

f ′ ( x ) = { 1 ?if? ( x > 0 ) a ?if? ( x < = 0 ) f^{\prime}(x)=\left\{\begin{array}{cl} 1 & \text { if } (x>0) \\ a & \text { if }(x<=0) \end{array}\right. f(x)={1a??if?(x>0)?if?(x<=0)?

1.5.3 代码实现

import numpy as np
class LeakyReLU():
    def __init__(self, alpha=0.2):
        self.alpha = alpha

    def __call__(self, x):
        return np.where(x >= 0, x, self.alpha * x)

    def gradient(self, x):
        return np.where(x >= 0, 1, self.alpha)

1.6 ELU

1.61 函数

f ( x ) = { x , ?if? x ≥ 0 a ( e x ? 1 ) , ?if? ( x < 0 ) f(x)=\left\{\begin{array}{cll} x, & \text { if } x \geq 0 \\ a\left(e^{x}-1\right), & \text { if } (x<0) \end{array}\right. f(x)={x,a(ex?1),??if?x0?if?(x<0)?

1.6.2 导数

当x>=0时,导数为1。

当x<0时,导数的推导过程:
f ( x ) ′ = ( a ( e x ? 1 ) ) ′ = a e x = a ( e x ? 1 ) + a = f ( x ) + a = a e x \begin{aligned} \\ f(x)^{\prime} &=\left(a\left(e^{x}-1\right)\right)^{\prime} \\ &=a e^{x} \\ &\left.=a (e^{x}-1\right)+a \\ &=f(x)+a=ae^{x} \end{aligned} f(x)?=(a(ex?1))=aex=a(ex?1)+a=f(x)+a=aex?
所以,完整的导数为:
f ′ = { 1 ?if? x ≥ 0 f ( x ) + a = a e x ?if? x < 0 f^{\prime}=\left\{\begin{array}{cll} 1 & \text { if } & x \geq 0 \\ f(x)+a=ae^{x} & \text { if } & x<0 \end{array}\right. f={1f(x)+a=aex??if??if??x0x<0?

1.6.3 代码实现

import numpy as np
class ELU():
    def __init__(self, alpha=0.1):
        self.alpha = alpha 

    def __call__(self, x):
        return np.where(x >= 0.0, x, self.alpha * (np.exp(x) - 1))

    def gradient(self, x):
        return np.where(x >= 0.0, 1, self.__call__(x) + self.alpha)

1.7 selu

1.7.1 函数

selu ? ( x ) = λ { x ?if? ( x > 0 ) α e x ? α ?if? ( x ? 0 ) \operatorname{selu}(x)=\lambda \begin{cases}x & \text { if } (x>0) \\ \alpha e^{x}-\alpha & \text { if } (x \leqslant 0)\end{cases} selu(x)=λ{xαex?α??if?(x>0)?if?(x?0)?

1.7.2 导数

selu ? ′ ( x ) = λ { 1 x > 0 α e x ? 0 \operatorname{selu}^{\prime}(x)=\lambda \begin{cases}1 & x>0 \\ \alpha e^{x} & \leqslant 0\end{cases} selu(x)=λ{1αex?x>0?0?

1.7.3 代码实现

import numpy as np
class SELU():
    # Reference : https://arxiv.org/abs/1706.02515,
    # https://github.com/bioinf-jku/SNNs/blob/master/SelfNormalizingNetworks_MLP_MNIST.ipynb
    def __init__(self):
        self.alpha = 1.6732632423543772848170429916717
        self.scale = 1.0507009873554804934193349852946 

    def __call__(self, x):
        return self.scale * np.where(x >= 0.0, x, self.alpha*(np.exp(x)-1))

    def gradient(self, x):
        return self.scale * np.where(x >= 0.0, 1, self.alpha * np.exp(x))

1.8 softplus

1.81 函数

Softplus ? ( x ) = log ? ( 1 + e x ) \operatorname{Softplus}(x)=\log \left(1+e^{x}\right) Softplus(x)=log(1+ex)

1.8.2 导数

log默认的底数是 e e e
f ′ ( x ) = e x ( 1 + e x ) ln ? e = 1 1 + e ? x = σ ( x ) f^{\prime}(x)=\frac{e^{x}}{(1+e^{x})\ln e}=\frac{1}{1+e^{-x}}=\sigma(x) f(x)=(1+ex)lneex?=1+e?x1?=σ(x)

1.8.3 代码实现

import numpy as np
class SoftPlus():
    def __call__(self, x):
        return np.log(1 + np.exp(x))

    def gradient(self, x):
        return 1 / (1 + np.exp(-x))

1.9 Swish

1.9.1 函数

f ( x ) = x ? sigmoid ? ( β x ) f(x)=x \cdot \operatorname{sigmoid}(\beta x) f(x)=x?sigmoid(βx)

1.9.2 导数

f ′ ( x ) = σ ( β x ) + β x ? σ ( β x ) ( 1 ? σ ( β x ) ) = σ ( β x ) + β x ? σ ( β x ) ? β x ? σ ( β x ) 2 = β x ? σ ( x ) + σ ( β x ) ( 1 ? β x ? σ ( β x ) ) = β f ( x ) + σ ( β x ) ( 1 ? β f ( x ) ) \begin{aligned} f^{\prime}(x) &=\sigma(\beta x)+\beta x \cdot \sigma(\beta x)(1-\sigma(\beta x)) \\ &=\sigma(\beta x)+\beta x \cdot \sigma(\beta x)-\beta x \cdot \sigma(\beta x)^{2} \\ &=\beta x \cdot \sigma(x)+\sigma(\beta x)(1-\beta x \cdot \sigma(\beta x)) \\ &=\beta f(x)+\sigma(\beta x)(1-\beta f(x)) \end{aligned} f(x)?=σ(βx)+βx?σ(βx)(1?σ(βx))=σ(βx)+βx?σ(βx)?βx?σ(βx)2=βx?σ(x)+σ(βx)(1?βx?σ(βx))=βf(x)+σ(βx)(1?βf(x))?

1.9.3 代码实现

import numpy as np


class Swish(object):
    def __init__(self, b):
        self.b = b

    def __call__(self, x):
        return x * (np.exp(self.b * x) / (np.exp(self.b * x) + 1))

    def gradient(self, x):
        return self.b * x / (1 + np.exp(-self.b * x)) + (1 / (1 + np.exp(-self.b * x)))(
            1 - self.b * (x / (1 + np.exp(-self.b * x))))

1.10 Mish

1.10.1 函数

f ( x ) = x ? tanh ? ( ln ? ( 1 + e x ) ) f(x)=x * \tanh \left(\ln \left(1+e^{x}\right)\right) f(x)=x?tanh(ln(1+ex))

1.10.2 导数

f ′ ( x ) = sech ? 2 ( soft ? plus ? ( x ) ) x sigmoid ? ( x ) + f ( x ) x = Δ ( x ) s w i sh ? ( x ) + f ( x ) x \begin{gathered} f^{\prime}(x)=\operatorname{sech}^{2}(\operatorname{soft} \operatorname{plus}(x)) x \operatorname{sigmoid}(x)+\frac{f(x)}{x} \\ =\Delta(x) s w i \operatorname{sh}(x)+\frac{f(x)}{x} \end{gathered} f(x)=sech2(softplus(x))xsigmoid(x)+xf(x)?=Δ(x)swish(x)+xf(x)??
where softplus ( x ) = ln ? ( 1 + e x ) (x)=\ln \left(1+e^{x}\right) (x)=ln(1+ex) and sigmoid ( x ) = 1 / ( 1 + e ? x ) (x)=1 /\left(1+e^{-x}\right) (x)=1/(1+e?x).

1.10.3 代码实现

import numpy as np


def sech(x):
    """sech函数"""
    return 2 / (np.exp(x) + np.exp(-x))


def sigmoid(x):
    """sigmoid函数"""
    return 1 / (1 + np.exp(-x))


def soft_plus(x):
    """softplus函数"""
    return np.log(1 + np.exp(x))


def tan_h(x):
    """tanh函数"""
    return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))


class Mish:

    def __call__(self, x):
        return x * tan_h(soft_plus(x))

    def gradient(self, x):
        return sech(soft_plus(x)) * sech(soft_plus(x)) * x * sigmoid(x) + tan_h(soft_plus(x))

1.11 SiLU

1.11.1 函数

f ( x ) = x × s i g m o i d ( x ) f(x)=x \times sigmoid (x) f(x)=x×sigmoid(x)

img

1.11.2 导数

推导过程
f ( x ) ′ = ( x ? s i g m o i d ( x ) ) ′ = s i g m o i d ( x ) + x ? ( s i g m o i d ( x ) ( 1 ? s i g m o i d ( x ) ) = s i g m o i d ( x ) + x ? s i g m o i d ( x ) ? x ? s i g m o i d 2 ( x ) = f ( x ) + sigmoid ? ( x ) ( 1 ? f ( x ) ) \begin{aligned} &f(x)^{\prime}=(x \cdot sigmoid(x))^{\prime}\\ &=sigmoid(x)+x \cdot(sigmoid(x)(1-sigmoid(x))\\ &=sigmoid(x)+x \cdot sigmoid(x)-x \cdot sigmoid^{2}(x)\\ &=f(x)+\operatorname{sigmoid}(x)(1-f(x)) \end{aligned} ?f(x)=(x?sigmoid(x))=sigmoid(x)+x?(sigmoid(x)(1?sigmoid(x))=sigmoid(x)+x?sigmoid(x)?x?sigmoid2(x)=f(x)+sigmoid(x)(1?f(x))?
img

1.11.3 代码实现

import numpy as np


def sigmoid(x):
    """sigmoid函数"""
    return 1 / (1 + np.exp(-x))


class SILU(object):

    def __call__(self, x):
        return x * sigmoid(x)

    def gradient(self, x):
        return self.__call__(x) + sigmoid(x) * (1 - self.__call__(x))

1.12 完整代码

定义一个activation_function.py,将下面的代码复制进去,到这里激活函数就完成了。

import numpy as np


# Collection of activation functions
# Reference: https://en.wikipedia.org/wiki/Activation_function

class Sigmoid():
    def __call__(self, x):
        return 1 / (1 + np.exp(-x))

    def gradient(self, x):
        return self.__call__(x) * (1 - self.__call__(x))


class Softmax():
    def __call__(self, x):
        e_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
        return e_x / np.sum(e_x, axis=-1, keepdims=True)

    def gradient(self, x):
        p = self.__call__(x)
        return p * (1 - p)


class TanH():
    def __call__(self, x):
        return 2 / (1 + np.exp(-2 * x)) - 1

    def gradient(self, x):
        return 1 - np.power(self.__call__(x), 2)


class ReLU():
    def __call__(self, x):
        return np.where(x >= 0, x, 0)

    def gradient(self, x):
        return np.where(x >= 0, 1, 0)


class LeakyReLU():
    def __init__(self, alpha=0.2):
        self.alpha = alpha

    def __call__(self, x):
        return np.where(x >= 0, x, self.alpha * x)

    def gradient(self, x):
        return np.where(x >= 0, 1, self.alpha)


class ELU(object):
    def __init__(self, alpha=0.1):
        self.alpha = alpha

    def __call__(self, x):
        return np.where(x >= 0.0, x, self.alpha * (np.exp(x) - 1))

    def gradient(self, x):
        return np.where(x >= 0.0, 1, self.__call__(x) + self.alpha)


class SELU():
    # Reference : https://arxiv.org/abs/1706.02515,
    # https://github.com/bioinf-jku/SNNs/blob/master/SelfNormalizingNetworks_MLP_MNIST.ipynb
    def __init__(self):
        self.alpha = 1.6732632423543772848170429916717
        self.scale = 1.0507009873554804934193349852946

    def __call__(self, x):
        return self.scale * np.where(x >= 0.0, x, self.alpha * (np.exp(x) - 1))

    def gradient(self, x):
        return self.scale * np.where(x >= 0.0, 1, self.alpha * np.exp(x))


class SoftPlus(object):
    def __call__(self, x):
        return np.log(1 + np.exp(x))

    def gradient(self, x):
        return 1 / (1 + np.exp(-x))


class Swish(object):
    def __init__(self, b):
        self.b = b

    def __call__(self, x):
        return x * (np.exp(self.b * x) / (np.exp(self.b * x) + 1))

    def gradient(self, x):
        return self.b * x / (1 + np.exp(-self.b * x)) + (1 / (1 + np.exp(-self.b * x)))(
            1 - self.b * (x / (1 + np.exp(-self.b * x))))


def sech(x):
    """sech函数"""
    return 2 / (np.exp(x) + np.exp(-x))


def sigmoid(x):
    """sigmoid函数"""
    return 1 / (1 + np.exp(-x))


def soft_plus(x):
    """softplus函数"""
    return np.log(1 + np.exp(x))


def tan_h(x):
    """tanh函数"""
    return (np.exp(x) - np.exp(-x)) / (np.exp(x) + np.exp(-x))


class Mish:

    def __call__(self, x):
        return x * tan_h(soft_plus(x))

    def gradient(self, x):
        return sech(soft_plus(x)) * sech(soft_plus(x)) * x * sigmoid(x) + tan_h(soft_plus(x))

class SILU(object):

    def __call__(self, x):
        return x * sigmoid(x)

    def gradient(self, x):
        return self.__call__(x) + sigmoid(x) * (1 - self.__call__(x))


参考公式
( C ) ′ = 0 (C)^{\prime}=0 (C)=0
( a x ) ′ = a x ln ? a \left(a^{x}\right)^{\prime}=a^{x} \ln a (ax)=axlna
( x μ ) ′ = μ x μ ? 1 \left(x^{\mu}\right)^{\prime}=\mu x^{\mu-1} (xμ)=μxμ?1
( e x ) ′ = e x \left(e^{x}\right)^{\prime}=e^{x} (ex)=ex
( sin ? x ) ′ = cos ? x (\sin x)^{\prime}=\cos x (sinx)=cosx
( log ? a x ) ′ = 1 x ln ? a \left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a} (loga?x)=xlna1?
( cos ? x ) ′ = ? sin ? x (\cos x)^{\prime}=-\sin x (cosx)=?sinx
( ln ? x ) ′ = 1 x (\ln x)^{\prime}=\frac{1}{x} (lnx)=x1?
( tan ? x ) ′ = sec ? 2 x (\tan x)^{\prime}=\sec ^{2} x (tanx)=sec2x
( arcsin ? x ) ′ = 1 1 ? x 2 (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} (arcsinx)=1?x2 ?1?
( cot ? x ) ′ = ? csc ? 2 x (\cot x)^{\prime}=-\csc ^{2} x (cotx)=?csc2x
( arccos ? x ) ′ = ? 1 1 ? x 2 (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} (arccosx)=?1?x2 ?1?
( sec ? x ) ′ = sec ? x ? tan ? x (\sec x)^{\prime}=\sec x \cdot \tan x (secx)=secx?tanx
( arctan ? x ) ′ = 1 1 + x 2 (\arctan x)^{\prime}=\frac{1}{1+x^{2}} (arctanx)=1+x21?
( csc ? x ) ′ = ? csc ? x ? cot ? x (\csc x)^{\prime}=-\csc x \cdot \cot x (cscx)=?cscx?cotx
( arccot ? x ) ′ = ? 1 1 + x 2 (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} (arccotx)=?1+x21?

双曲正弦: sinh ? x = e x ? e ? x 2 \sinh x=\frac{e^{x}-e^{-x}}{2} sinhx=2ex?e?x?
双曲余弦: cosh ? x = e x + e ? x 2 \cosh x=\frac{e^{x}+e^{-x}}{2} coshx=2ex+e?x?
双曲正切: tanh ? x = sinh ? x cosh ? x = e x ? e ? x e x + e ? x \tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} tanhx=coshxsinhx?=ex+e?xex?e?x?
双曲余切: coth ? x = 1 tanh ? x = e x + e ? x e x ? e ? x \operatorname{coth} x=\frac{1}{\tanh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} cothx=tanhx1?=ex?e?xex+e?x?
双曲正割: sech ? x = 1 cosh ? x = 2 e x + e ? x \operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}} sechx=coshx1?=ex+e?x2?
双曲余割: csch ? x = 1 sinh ? x = 2 e x ? e ? x \operatorname{csch} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}} cschx=sinhx1?=ex?e?x2?

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-09-20 15:47:40  更:2021-09-20 15:47:52 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 14:25:47-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码