| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 【3D目标检测/跟踪】Center-based 3D Object Detection and Tracking阅读笔记(2021) -> 正文阅读 |
|
[人工智能]【3D目标检测/跟踪】Center-based 3D Object Detection and Tracking阅读笔记(2021) |
1、为什么要做这个研究(理论走向和目前缺陷) ? 摘要:利用点云做3D目标时也是把目标表达为一个3D,这其实是源于2D目标检测的范式。但是3D目标会有各种各样的朝向,基于3D框的检测器不可能列举出所有的方向。本文提出将表达、检测、跟踪任务都基于点来做,即CenterPoint。CenterPoint在第一阶段利用关键点检测器找出所有目标中心点,并回归出3D尺寸、3D朝向、以及速度。在第二阶段,利用目标中的点特征对上述预测进一步精细化。CenterPoint把3D目标跟踪简化到贪心最近匹配,最终的检测和跟踪算法都很简单且高效。 1、引言 2、相关研究 3、先验知识 4、CenterPoint 速度头和跟踪:为了跟踪,需要预测一个二维的速度方向,故训练时用一个两通道的热力图作为监督,也是只计算目标中心点的L1损失。 4.1 两阶段的CenterPoint 第一阶段第二阶段都预测了得分,最后的得分是这两个得分相乘然后开方。 4.2 架构 3D检测:见表1和表2,无论在行人还是在车辆表现都是最好的,而且很快。 5.2 消融研究 一阶段对比两阶段: 不同特征组合对第二阶段提升影响:本文的第二阶段网络只用了第一阶段基于2D卷积输出的特征,还可以考虑加入2D卷积之前的体素特征(参考PV-RCNN中的体素集合特征和RBF插值体素特征)进一步提升性能,实验结果见表10,实验结果表明提升不大。 在检测一样的情况下,用本文基于速度的贪心点最近距离跟踪结果比卡尔曼滤波跟踪结果要好,而且快非常多,见表12. |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 | -2025/1/11 17:09:58- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |