贝叶斯决策论
贝叶斯决策论(Bayesian decision theory)是概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的理想情况下,贝叶斯决策轮考虑如何基于这些概率和误判损失来选择最优的类别标记。
后验概率
从公式中可知,如果要计算X条件下Y发生的概率,只需要计算出后面等式的三个部分,X事件的概率(P(X)),是X的先验概率、Y属于某类的概率(P(Y)),是Y的先验概率、以及已知Y的某个分类下,事件X的概率(P(X|Y)),是后验概率。
For example: 假设一个学校里有60%男生和40%女生。女生穿裤子的人数和穿裙子的人数相等,所有男生穿裤子。一个人在远处随机看到了一个穿裤子的学生。那么这个学生是女生的概率是多少?
使用 贝叶斯定理,事件A是看到女生,事件B是看到一个穿裤子的学生。我们所要计算的是P(A|B)。
P(A)是忽略其它因素,看到女生的概率,在这里是40%
P(A’)是忽略其它因素,看到不是女生(即看到男生)的概率,在这里是60%
P(B|A)是女生穿裤子的概率,在这里是50%
P(B|A’)是男生穿裤子的概率,在这里是100%
P(B)是忽略其它因素,学生穿裤子的概率,P(B) = P( B|A )P( A) + P( B| A’)P( A’),在这里是0.5×0.4 + 1×0.6 = 0.8.
根据贝叶斯定理,我们计算出后验概率P(A|B)
P(A|B)=P(B|A)*P(A)/P(B)=0.25
可见,后验概率实际上就是条件概率。
朴素贝叶斯 工作原理
1,提取所有文档中的词条并进行去重
2,获取文档的所有类别
3,计算每个类别中的文档数目
4,对每篇训练文档:
对每个类别:
如果词条出现在文档中-->增加该词条的计数值(for循环或者矩阵相加)
增加所有词条的计数值(此类别下词条总数)
5,对每个类别:
对每个词条:
将该词条的数目除以总词条数目得到的条件概率(P(词条|类别))
6,返回该文档属于每个类别的条件概率(P(类别|文档的所有词条))
朴素贝叶斯 算法特点
优点: 在数据较少的情况下仍然有效,可以处理多类别问题。 缺点: 对于输入数据的准备方式较为敏感。 适用数据类型: 标称型数据。
代码实现
# 词表到向量的转换函数
def loadDataSet(): # LoadDataSet()创建一些实验样本,切分的词条
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] # 类别标签向量,1代表侮辱性词汇,0代表不是
return postingList, classVec
"""
函数说明:根据vocabList词汇表,将inputSet向量化,向量的每个元素为1或0
Parameters:
vocabList - createVocabList返回的列表
inputSet - 切分的词条列表
Returns:
returnVec - 文档向量,词集模型
"""
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0] * len(vocabList) # 创建一个其中所含元素都为0的向量
for word in inputSet: # 遍历每个词条
if word in vocabList: # 如果词条存在于词汇表中,则置1
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec # 返回文档向量
"""
函数说明:将切分的实验样本词条整理成不重复的词条列表,也就是词汇表
Parameters:
dataSet - 整理的样本数据集
Returns:
vocabSet - 返回不重复的词条列表,也就是词汇表
postingList是原始的词条列表,myVocabList是词汇表。
myVocabList是所有单词出现的集合,没有重复的元素
词汇表它是用来将词条向量化的,一个单词在词汇表中出现过一次,
那么就在相应位置记作1,如果没有出现就在相应位置记作0。trainMat是所有的词条向量组成的列表。
它里面存放的是根据myVocabList向量化的词条向量。
"""
def createVocabList(dataSet):
vocabSet = set([]) # 创建一个空的不重复列表
for document in dataSet:
vocabSet = vocabSet | set(document) # 取并集
return list(vocabSet)
if __name__ == '__main__':
postingList, classVec = loadDataSet()
print('postingList:\n', postingList)
myVocabList = createVocabList(postingList)
print('myVocabList:\n', myVocabList)
trainMat = []
for postinDoc in postingList:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
print('trainMat:\n', trainMat)
# if __name__ == '__main__':
# postingLIst, classVec = loadDataSet()
# for each in postingLIst:
# print(each)
# print(classVec)
import numpy as np
"""
函数说明:朴素贝叶斯分类器训练函数
Parameters:
trainMatrix - 训练文档矩阵,即setOfWords2Vec返回的returnVec构成的矩阵
trainCategory - 训练类别标签向量,即loadDataSet返回的classVec
Returns:
p0Vect - 侮辱类的条件概率数组
p1Vect - 非侮辱类的条件概率数组
pAbusive - 文档属于侮辱类的概率
"""
def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix) # 计算训练的文档数目
numWords = len(trainMatrix[0]) # 计算每篇文档的词条数
pAbusive = sum(trainCategory) / float(numTrainDocs) # 文档属于侮辱类的概率
p0Num = np.ones(numWords);
p1Num = np.ones(numWords) # 创建numpy.ones数组,词条出现数初始化为1,拉普拉斯平滑
p0Denom = 2.0;
p1Denom = 2.0 # 分母初始化为2,拉普拉斯平滑
for i in range(numTrainDocs):
if trainCategory[i] == 1: # 统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else: # 统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = np.log(p1Num / p1Denom) # 取对数,防止下溢出
p0Vect = np.log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive # 返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率12345678910111213141516171819
# def trainNB0(trainMatrix, trainCategory):
# numTrainDocs = len(trainMatrix) #计算训练的文档数目
# numWords = len(trainMatrix[0]) #计算每篇文档的词条数
# pAbusive = sum(trainCategory)/float(numTrainDocs) #文档属于侮辱类的概率
# p0Num = np.zeros(numWords); p1Num = np.zeros(numWords) #创建numpy.zeros数组,词条出现数初始化为0
# p0Denom = 0.0; p1Denom = 0.0 #分母初始化为0
# for i in range(numTrainDocs):
# if trainCategory[i] == 1: #统计属于侮辱类的条件概率所需的数据,即P(w0|1),P(w1|1),P(w2|1)···
# p1Num += trainMatrix[i]
# p1Denom += sum(trainMatrix[i])
# else: #统计属于非侮辱类的条件概率所需的数据,即P(w0|0),P(w1|0),P(w2|0)···
# p0Num += trainMatrix[i]
# p0Denom += sum(trainMatrix[i])
# p1Vect = p1Num/p1Denom
# p0Vect = p0Num/p0Denom
# return p0Vect, p1Vect, pAbusive #返回属于侮辱类的条件概率数组,属于非侮辱类的条件概率数组,文档属于侮辱类的概率
if __name__ == '__main__':
postingList, classVec = loadDataSet()
myVocabList = createVocabList(postingList)
print('myVocabList:\n', myVocabList)
trainMat = []
for postinDoc in postingList:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V, p1V, pAb = trainNB0(trainMat, classVec)
print('p0V:\n', p0V)
print('p1V:\n', p1V)
print('classVec:\n', classVec)
print('pAb:\n', pAb)
# 使用分类器进行分类。
from functools import reduce
"""
函数说明:朴素贝叶斯分类器分类函数
Parameters:
vec2Classify - 待分类的词条数组
p0Vec - 侮辱类的条件概率数组
p1Vec -非侮辱类的条件概率数组
pClass1 - 文档属于侮辱类的概率
Returns:
0 - 属于非侮辱类
1 - 属于侮辱类
"""
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + np.log(pClass1) # 对应元素相乘。logA * B = logA + logB,所以这里加上log(pClass1)
p0 = sum(vec2Classify * p0Vec) + np.log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
# def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
# p1 = reduce(lambda x, y: x*y, vec2Classify * p1Vec) * pClass1 #对应元素相乘
# p0 = reduce(lambda x, y: x*y, vec2Classify * p0Vec) * (1.0 - pClass1)
# print('p0:', p0)
# print('p1:', p1)
# if p1 > p0:
# return 1
# else:
# return 0
"""
函数说明:测试朴素贝叶斯分类器
Parameters:
无
Returns:
无
"""
def testingNB():
listOPosts, listClasses = loadDataSet() # 创建实验样本
myVocabList = createVocabList(listOPosts) # 创建词汇表
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) # 将实验样本向量化
p0V, p1V, pAb = trainNB0(np.array(trainMat), np.array(listClasses)) # 训练朴素贝叶斯分类器
testEntry = ['love', 'my', 'dalmation'] # 测试样本1
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) # 测试样本向量化
if classifyNB(thisDoc, p0V, p1V, pAb):
print(testEntry, '属于侮辱类') # 执行分类并打印分类结果
else:
print(testEntry, '属于非侮辱类') # 执行分类并打印分类结果
testEntry = ['stupid', 'garbage'] # 测试样本2
thisDoc = np.array(setOfWords2Vec(myVocabList, testEntry)) # 测试样本向量化
if classifyNB(thisDoc, p0V, p1V, pAb):
print(testEntry, '属于侮辱类') # 执行分类并打印分类结果
else:
print(testEntry, '属于非侮辱类') # 执行分类并打印分类结果
if __name__ == '__main__':
testingNB()
|