Pytorch CPU 训练 MNIST Dataset 例子
1. 代码主要来源于:
Source: https://github.com/pytorch/examples/
注意:应为版本不一致的原因,会出现下面的报错信息:
pytorch报错:IndexError: invalid index of a 0-dim tensor.
Use tensor.item() to convert a 0-dim tensor to a Python number
是你的torch版本的不同造成的。
解决:将loss.data[0] 改成loss.item()
2. 源代码:
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
args = {}
kwargs = {}
args['batch_size'] = 1000
args['test_batch_size'] = 1000
args['epochs'] = 10
args['lr'] = 0.01
args['momentum'] = 0.5
args['seed'] = 1
args['log_interval'] = 10
args['cuda'] = False
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args['batch_size'], shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args['test_batch_size'], shuffle=True, **kwargs)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args['cuda']:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args['log_interval'] == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args['cuda']:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
model = Net()
if args['cuda']:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args['lr'], momentum=args['momentum'])
for epoch in range(1, args['epochs'] + 1):
train(epoch)
test()
3. 最终结果:
Test set: Average loss: 0.2741, Accuracy: 9209/10000 (92%)
|