IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> HGAN部分代码 -> 正文阅读

[人工智能]HGAN部分代码

代码可以在github上fork,本文主要是加了一些注释,并且搭配本人所作笔记【HGAN代码加笔记的理解】
main.py

import torch
from sklearn.metrics import f1_score

from utils import load_data, EarlyStopping

def score(logits, labels):
    #在类的方法或属性前加一个“_”单下划线,意味着该方法或属性不应该去调用,它并不属于API。
    _, indices = torch.max(logits, dim=1)
    prediction = indices.long().cpu().numpy()
    labels = labels.cpu().numpy()

    accuracy = (prediction == labels).sum() / len(prediction)
    micro_f1 = f1_score(labels, prediction, average='micro')
    macro_f1 = f1_score(labels, prediction, average='macro')

    return accuracy, micro_f1, macro_f1

def evaluate(model, g, features, labels, mask, loss_func):
    model.eval()
    with torch.no_grad():
        logits = model(g, features)
    loss = loss_func(logits[mask], labels[mask])
    accuracy, micro_f1, macro_f1 = score(logits[mask], labels[mask])

    return loss, accuracy, micro_f1, macro_f1

def main(args):
    # If args['hetero'] is True, g would be a heterogeneous graph.
    # Otherwise, it will be a list of homogeneous graphs.
    #Python中反斜杠也可以用在一行结尾做续行符使用
    g, features, labels, num_classes, train_idx, val_idx, test_idx, train_mask, \
    val_mask, test_mask = load_data(args['dataset'])

    if hasattr(torch, 'BoolTensor'):
        #hasattr() 函数用于判断对象是否包含对应的属性,此处是判断torch是否有'BoolTensor'属性,如果对象有该属性,则返回TRUE
        #torch.DoubleTensor对应torch.float64; 猜测同理,BoolTensor应该也是Bool类型
        train_mask = train_mask.bool()
        val_mask = val_mask.bool()
        test_mask = test_mask.bool()
    # .to() 是cpu,args['device']结果是cpu
    features = features.to(args['device'])
    labels = labels.to(args['device'])
    train_mask = train_mask.to(args['device'])
    val_mask = val_mask.to(args['device'])
    test_mask = test_mask.to(args['device'])

    if args['hetero']: #构建异构图的邻居节点
        from model_hetero import HAN
        #此处的HAN跳进的是model_hetro的模型,猜测是,如果已经有异构图了,就找这样的元路径,然后做节点级别和语义级别的注意力机制
        model = HAN(meta_paths=[['pa', 'ap'], ['pf', 'fp']],#之前构建的边:pa, ap,组合成mete-path:PAP
                    in_size=features.shape[1],
                    hidden_size=args['hidden_units'],
                    out_size=num_classes,
                    num_heads=args['num_heads'],
                    dropout=args['dropout']).to(args['device'])
        g = g.to(args['device'])
    else:
        #自己构建异构图
        from model import HAN
        model = HAN(num_meta_paths=len(g),#meta_path的长度,g即之前定义的邻接矩阵,3
                    in_size=features.shape[1],#特征的维度 1870维
                    hidden_size=args['hidden_units'],
                    out_size=num_classes,
                    num_heads=args['num_heads'],#使用多头的数量
                    dropout=args['dropout']).to(args['device'])
        g = [graph.to(args['device']) for graph in g]

    stopper = EarlyStopping(patience=args['patience'])
    loss_fcn = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=args['lr'],
                                 weight_decay=args['weight_decay'])

    for epoch in range(args['num_epochs']):
        model.train()
        logits = model(g, features)
        loss = loss_fcn(logits[train_mask], labels[train_mask])

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        train_acc, train_micro_f1, train_macro_f1 = score(logits[train_mask], labels[train_mask])
        val_loss, val_acc, val_micro_f1, val_macro_f1 = evaluate(model, g, features, labels, val_mask, loss_fcn)
        early_stop = stopper.step(val_loss.data.item(), val_acc, model)

        print('Epoch {:d} | Train Loss {:.4f} | Train Micro f1 {:.4f} | Train Macro f1 {:.4f} | '
              'Val Loss {:.4f} | Val Micro f1 {:.4f} | Val Macro f1 {:.4f}'.format(
            epoch + 1, loss.item(), train_micro_f1, train_macro_f1, val_loss.item(), val_micro_f1, val_macro_f1))

        if early_stop:
            break

    stopper.load_checkpoint(model)
    test_loss, test_acc, test_micro_f1, test_macro_f1 = evaluate(model, g, features, labels, test_mask, loss_fcn)
    print('Test loss {:.4f} | Test Micro f1 {:.4f} | Test Macro f1 {:.4f}'.format(
        test_loss.item(), test_micro_f1, test_macro_f1))

if __name__ == '__main__':
    import argparse

    from utils import setup

    parser = argparse.ArgumentParser('HAN')
    parser.add_argument('-s', '--seed', type=int, default=1,
                        help='Random seed')
    parser.add_argument('-ld', '--log-dir', type=str, default='results',
                        help='Dir for saving training results')
    parser.add_argument('--hetero', action='store_true',
                        help='Use metapath coalescing with DGL\'s own dataset')
    args = parser.parse_args().__dict__

    args = setup(args)

    main(args)

model.py

import torch
import torch.nn as nn
import torch.nn.functional as F
# DGL是一个专门用于深度学习图形的Python包, 一款面向图神经网络以及图机器学习的全新框架, 简化了基于图形的神经网络的实现。
from dgl.nn.pytorch import GATConv

class SemanticAttention(nn.Module):
    def __init__(self, in_size, hidden_size=128):
        super(SemanticAttention, self).__init__()

        self.project = nn.Sequential(#定义了2层的一个全连接层
            nn.Linear(in_size, hidden_size),#定义了一个全连接层
            nn.Tanh(),#激活函数
            nn.Linear(hidden_size, 1, bias=False)
        )

    def forward(self, z):
        w = self.project(z).mean(0)   #    每个节点在meta_path维度的均值;mean(0):每个meta path上的均值(/|V|)             # (M, 1)
        beta = torch.softmax(w, dim=0)    #归一化,之后得到 每个系数前面的beta             # (M, 1)
        beta = beta.expand((z.shape[0],) + beta.shape) # (N, M, 1)
        #beta * z.shape ==> [3025,2,64] 2表示在两个meta——path下面,64即node_embedding时候输出的一个维度
        return (beta * z).sum(1)                       # (N, D * K) 输出节点数量和节点最终的一个embedding

class HANLayer(nn.Module):
    """
    HAN layer.

    Arguments
    ---------
    num_meta_paths : number of homogeneous graphs generated from the metapaths.
    in_size : input feature dimension
    out_size : output feature dimension
    layer_num_heads : number of attention heads
    dropout : Dropout probability

    Inputs
    ------
    g : list[DGLGraph]
        List of graphs
    h : tensor
        Input features

    Outputs
    -------
    tensor
        The output feature
    """
    def __init__(self, num_meta_paths, in_size, out_size, layer_num_heads, dropout):
        super(HANLayer, self).__init__()

        # One GAT layer for each meta path based adjacency matrix
        self.gat_layers = nn.ModuleList()
        for i in range(num_meta_paths): #meta_path Layers;两个meta_path的维度是一致的
            #out_size 即规定的Hidden_layer的size
            self.gat_layers.append(GATConv(in_size, out_size, layer_num_heads,
                                           dropout, dropout, activation=F.elu))
        self.semantic_attention = SemanticAttention(in_size=out_size * layer_num_heads)#语义attention
        self.num_meta_paths = num_meta_paths

    def forward(self, gs, h):
        semantic_embeddings = []

        for i, g in enumerate(gs):#每个meta_path的图信息,求节点的attention
            semantic_embeddings.append(self.gat_layers[i](g, h).flatten(1))#两个gat,每个meta_path对应一个GAT
        #self.gat_layers[i](g, h).shape得到的是torch.size([3025,8,8]) 3025是节点数量,8是多头,8是hidden_layer数量
        #flatten之后就会组合成为3025*64
        semantic_embeddings = torch.stack(semantic_embeddings, dim=1)#stack之后,就会变成[3025,2,64]2即表示有2个metapath
        # (N, M, D * K)
            #聚合meta_path下,每个节点最终的输出值
        return self.semantic_attention(semantic_embeddings)                            # (N, D * K)

class HAN(nn.Module):
    def __init__(self, num_meta_paths, in_size, hidden_size, out_size, num_heads, dropout):
        super(HAN, self).__init__()

        self.layers = nn.ModuleList()
        #num_heads:即做几层的HAN,多头的列表的第0维
        #nn.moduleList定义对象后,有extend和append方法,用法和python中一样,extend是添加另一个modulelist  append是添加另一个module。
        self.layers.append(HANLayer(num_meta_paths, in_size, hidden_size, num_heads[0], dropout))
        for l in range(1, len(num_heads)):#多层多头,目前是没有
            self.layers.append(HANLayer(num_meta_paths, hidden_size * num_heads[l-1],
                                        hidden_size, num_heads[l], dropout))
        self.predict = nn.Linear(hidden_size * num_heads[-1], out_size)#out_size是3,从outsize = num_classes=labels.shape[1]知道的
    def forward(self, g, h):
        for gnn in self.layers:#GAT_GAT 节点级别的GAT;semantic_attention语义级别attention
            h = gnn(g, h)#g即多个meta_path下所形成的邻接矩阵;h即节点的特征

        return self.predict(h)

utils.py

import datetime
import dgl
import errno
import numpy as np
import os
import pickle
import random
import torch

from dgl.data.utils import download, get_download_dir, _get_dgl_url
from pprint import pprint
from scipy import sparse
from scipy import io as sio
# utils 具体处理数据加载 和 早停策略。

def set_random_seed(seed=0):
    """Set random seed.
    Parameters
    ----------
    seed : int
        Random seed to use
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)

def mkdir_p(path, log=True):
    """Create a directory for the specified path.
    Parameters
    ----------
    path : str
        Path name
    log : bool
        Whether to print result for directory creation
    """
    try:
        os.makedirs(path)
        if log:
            print('Created directory {}'.format(path))
    except OSError as exc:
        if exc.errno == errno.EEXIST and os.path.isdir(path) and log:
            print('Directory {} already exists.'.format(path))
        else:
            raise

def get_date_postfix():
    """Get a date based postfix for directory name.
    Returns
    -------
    post_fix : str
    """
    dt = datetime.datetime.now()
    post_fix = '{}_{:02d}-{:02d}-{:02d}'.format(
        dt.date(), dt.hour, dt.minute, dt.second)

    return post_fix

def setup_log_dir(args, sampling=False):
    """Name and create directory for logging.
    Parameters
    ----------
    args : dict
        Configuration
    Returns
    -------
    log_dir : str
        Path for logging directory
    sampling : bool
        Whether we are using sampling based training
    """
    date_postfix = get_date_postfix()
    log_dir = os.path.join(
        args['log_dir'],
        '{}_{}'.format(args['dataset'], date_postfix))

    if sampling:
        log_dir = log_dir + '_sampling'

    mkdir_p(log_dir)
    return log_dir

# The configuration below is from the paper.
default_configure = {
    'lr': 0.005,             # Learning rate
    'num_heads': [8],        # Number of attention heads for node-level attention
    'hidden_units': 8,
    'dropout': 0.6,
    'weight_decay': 0.001,
    'num_epochs': 200,
    'patience': 100
}

sampling_configure = {
    'batch_size': 20
}

def setup(args):
    args.update(default_configure)
    set_random_seed(args['seed'])
    args['dataset'] = 'ACMRaw' if args['hetero'] else 'ACM'
    args['device'] = 'cuda:0' if torch.cuda.is_available() else 'cpu'
    args['log_dir'] = setup_log_dir(args)
    return args

def setup_for_sampling(args):
    args.update(default_configure)
    args.update(sampling_configure)
    set_random_seed()
    args['device'] = 'cuda:0' if torch.cuda.is_available() else 'cpu'
    args['log_dir'] = setup_log_dir(args, sampling=True)
    return args

def get_binary_mask(total_size, indices):
    mask = torch.zeros(total_size)
    mask[indices] = 1
    return mask.byte()

def load_acm(remove_self_loop):
    url = 'dataset/ACM3025.pkl'
    data_path = get_download_dir() + '/ACM3025.pkl'
    #download(_get_dgl_url(url), path=data_path) #下载过一次之后就不需要重复去下载了,就可以注释掉了

    with open(data_path, 'rb') as f:
        data = pickle.load(f)
    #todense()即转换为数组,long() 函数将数字或字符串转换为一个长整型。
    labels, features = torch.from_numpy(data['label'].todense()).long(), \
                       torch.from_numpy(data['feature'].todense()).float()
    num_classes = labels.shape[1]
    labels = labels.nonzero()[:, 1]#将之前的one_hot编码转换成类别数字型

    if remove_self_loop:#如果有环,就把环去除
        num_nodes = data['label'].shape[0]
        #np.eye()的函数,除了生成对角阵外,还可以将一个label数组,大小为(1,m)或者(m,1)的数组,转化成one-hot数组
        #csr中r即行,行优先
        data['PAP'] = sparse.csr_matrix(data['PAP'] - np.eye(num_nodes))
        data['PLP'] = sparse.csr_matrix(data['PLP'] - np.eye(num_nodes))

    # Adjacency matrices for meta path based neighbors
    # (Mufei): I verified both of them are binary adjacency matrices with self loops
    author_g = dgl.from_scipy(data['PAP'])#定义一个p-a-p的meta-path
    subject_g = dgl.from_scipy(data['PLP'])#定义一个p-l-p的meta_path
    gs = [author_g, subject_g] #将两个meta_path形成的图组合在一起
    #从numpy数组创建一个张量,数组和张量共享相同内存。返回的张量和ndarray共享相同的内存。
    #对张量的修改将反映在ndarray中,反之亦然。 返回的张量不可调整大小。
    train_idx = torch.from_numpy(data['train_idx']).long().squeeze(0)
    val_idx = torch.from_numpy(data['val_idx']).long().squeeze(0)
    test_idx = torch.from_numpy(data['test_idx']).long().squeeze(0)

    num_nodes = author_g.number_of_nodes()
    #mask是把它对应位置上的节点设置为1,其余位置为0
    train_mask = get_binary_mask(num_nodes, train_idx)
    val_mask = get_binary_mask(num_nodes, val_idx)
    test_mask = get_binary_mask(num_nodes, test_idx)

    print('dataset loaded')
    pprint({
        'dataset': 'ACM',
        'train': train_mask.sum().item() / num_nodes,
        'val': val_mask.sum().item() / num_nodes,
        'test': test_mask.sum().item() / num_nodes
    })

    return gs, features, labels, num_classes, train_idx, val_idx, test_idx, \
           train_mask, val_mask, test_mask

def load_acm_raw(remove_self_loop):
    assert not remove_self_loop
    url = 'dataset/ACM.mat'
    data_path = get_download_dir() + '/ACM.mat'
    download(_get_dgl_url(url), path=data_path)

    data = sio.loadmat(data_path)
    p_vs_l = data['PvsL']       # paper-field?
    p_vs_a = data['PvsA']       # paper-author
    p_vs_t = data['PvsT']       # paper-term, bag of words
    p_vs_c = data['PvsC']       # paper-conference, labels come from that

    # We assign
    # (1) KDD papers as class 0 (data mining),
    # (2) SIGMOD and VLDB papers as class 1 (database),
    # (3) SIGCOMM and MOBICOMM papers as class 2 (communication)
    conf_ids = [0, 1, 9, 10, 13]
    label_ids = [0, 1, 2, 2, 1]

    p_vs_c_filter = p_vs_c[:, conf_ids]
    p_selected = (p_vs_c_filter.sum(1) != 0).A1.nonzero()[0]
    p_vs_l = p_vs_l[p_selected]
    p_vs_a = p_vs_a[p_selected]
    p_vs_t = p_vs_t[p_selected]
    p_vs_c = p_vs_c[p_selected]

    hg = dgl.heterograph({
        ('paper', 'pa', 'author'): p_vs_a.nonzero(),
        ('author', 'ap', 'paper'): p_vs_a.transpose().nonzero(),
        ('paper', 'pf', 'field'): p_vs_l.nonzero(),
        ('field', 'fp', 'paper'): p_vs_l.transpose().nonzero()
    })

    features = torch.FloatTensor(p_vs_t.toarray())

    pc_p, pc_c = p_vs_c.nonzero()
    labels = np.zeros(len(p_selected), dtype=np.int64)
    for conf_id, label_id in zip(conf_ids, label_ids):
        labels[pc_p[pc_c == conf_id]] = label_id
    labels = torch.LongTensor(labels)

    num_classes = 3

    float_mask = np.zeros(len(pc_p))
    for conf_id in conf_ids:
        pc_c_mask = (pc_c == conf_id)
        float_mask[pc_c_mask] = np.random.permutation(np.linspace(0, 1, pc_c_mask.sum()))
    train_idx = np.where(float_mask <= 0.2)[0]
    val_idx = np.where((float_mask > 0.2) & (float_mask <= 0.3))[0]
    test_idx = np.where(float_mask > 0.3)[0]

    num_nodes = hg.number_of_nodes('paper')
    train_mask = get_binary_mask(num_nodes, train_idx)
    val_mask = get_binary_mask(num_nodes, val_idx)
    test_mask = get_binary_mask(num_nodes, test_idx)

    return hg, features, labels, num_classes, train_idx, val_idx, test_idx, \
            train_mask, val_mask, test_mask

def load_data(dataset, remove_self_loop=False):
    if dataset == 'ACM':
        return load_acm(remove_self_loop)
    elif dataset == 'ACMRaw':
        return load_acm_raw(remove_self_loop)
    else:
        return NotImplementedError('Unsupported dataset {}'.format(dataset))

class EarlyStopping(object):
    def __init__(self, patience=10):
        dt = datetime.datetime.now()
        self.filename = 'early_stop_{}_{:02d}-{:02d}-{:02d}.pth'.format(
            dt.date(), dt.hour, dt.minute, dt.second)
        self.patience = patience
        self.counter = 0
        self.best_acc = None
        self.best_loss = None
        self.early_stop = False

    def step(self, loss, acc, model):
        if self.best_loss is None:
            self.best_acc = acc
            self.best_loss = loss
            self.save_checkpoint(model)
        elif (loss > self.best_loss) and (acc < self.best_acc):
            self.counter += 1
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
            if self.counter >= self.patience:
                self.early_stop = True
        else:
            if (loss <= self.best_loss) and (acc >= self.best_acc):
                self.save_checkpoint(model)
            self.best_loss = np.min((loss, self.best_loss))
            self.best_acc = np.max((acc, self.best_acc))
            self.counter = 0
        return self.early_stop

    def save_checkpoint(self, model):
        """Saves model when validation loss decreases."""
        torch.save(model.state_dict(), self.filename)

    def load_checkpoint(self, model):
        """Load the latest checkpoint."""
        model.load_state_dict(torch.load(self.filename))

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-01 16:51:20  更:2021-10-01 16:55:28 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 12:53:21-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码