标量
标量由普通小写字母表示(例如,x、y和z)。我们用
R
\mathbb{R}
R表示所有(连续)实数标量的空间。
标量由只有一个元素的张量表示。下面代码,我们实例化了两个标量,并使用它们执行一些熟悉的算数运算,即加法、乘法、除法和指数。
import torch
x = torch.tensor([3.0])
y = torch.tensor([2.0])
x + y, x * y, x / y, x ** y
tensor([5]), tensor([6]), tensor([1.5]), tensor([9])
向量
向量是标量值组成的列表,我们将这些标量值称为向量的元素或分量。 在数学表示法中,我们通常将向量记为粗体、小写的符号(例如,
x
\mathbf{x}
x、
y
\mathbf{y}
y和
z
\mathbf{z}
z)
我们通过一维张量处理向量。一般来说,张量可以具有任意长度,最大长度取决于机器的内存限制。
x = torch.arange(4)
tensor([0, 1, 2, 3])
大量文献认为列向量是向量的默认方向。在数学中,向量
x
\mathbf{x}
x可以写为:
x
=
[
x
1
x
2
?
x
n
]
\mathbf{x}=\left[\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right]
x=??????x1?x2??xn????????
我们可以通过张量的索引来访问任一元素。
x[3]
tensor(3)
长度、维度和形状
在数学表示法中,如果我们想说一个向量
x
\mathbf{x}
x由
n
n
n个实值标量组成,我们可以将其表示为
x
∈
R
n
\mathbf{x} \in \mathbb{R}^{n}
x∈Rn。向量的长度通常称为向量的维度。
与普通的Python数组一样,我们可以通过调用Python的内置len()函数来访问张量的长度。
len(x)
4
当用张量表示一个向量(只有一个轴)时,我们也可以通过.shape属性访问向量的长度。形状(shape)是一个元组,列出了张量沿每个轴的长度(维数)。对于只有一个轴的张量,形状只有一个元素。
x.shape
torch.Size([4])
注意,维度(dimension)这个词在不同上下文时往往会有不同的含义,这经常会使人感到困惑。为了清楚起见,我们在此明确一下。向量或轴的维度被用来表示向量或轴的长度,即向量或轴的元素数量。然而,张量的维度用来表示张量具有的轴数。在这个意义上,张量的某个轴的维数就是这个轴的长度。
矩阵
向量将标量从零阶推广到了一阶,矩阵将向量从一阶推广到了二阶。矩阵,Tom五年通常用粗体、大写字母来表示(例如,
X
\mathbf{X}
X、
Y
\mathbf{Y}
Y和
Z
\mathbf{Z}
Z),在代码中表示为具有两个轴的张量。
在数学表示法中,我们使用
A
∈
R
m
×
n
\mathbf{A} \in \mathbb{R}^{m \times n}
A∈Rm×n来表示矩阵
A
\mathbf{A}
A,其由
m
m
m行和
n
n
n列的实值标量组成。直观地,我们可以将任意矩阵
A
∈
R
m
×
n
\mathbf{A} \in \mathbb{R}^{m \times n}
A∈Rm×n视为一个表格。
A
=
[
a
11
a
12
?
a
1
n
a
21
a
22
?
a
2
n
?
?
?
?
a
m
1
a
m
2
?
a
m
n
]
\mathbf{A}=\left[\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n} \end{array}\right]
A=??????a11?a21??am1??a12?a22??am2???????a1n?a2n??amn????????
当矩阵具有相同数量的行和列时,其形状将变为正方形;因此,它被称为方矩阵。
当调用函数来实例化张量时,我们可以通过指定两个分量
m
m
m和
n
n
n来创建一个形状为
m
×
n
m \times n
m×n的矩阵。
A = torch.arange(20).reshape(5, 4)
tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
当我们交换矩阵的行和列时,结果称为矩阵的转置。我们用
a
?
\mathbf{a}^{\top}
a?来表示矩阵的转置。 现在我们在代码中访问矩阵的转置。
A.T
tensor([[0, 4, 8, 12, 16],
[1, 5, 9, 13, 17],
[2, 6, 10, 14, 18],
[3, 7, 11, 15, 19]])
矩阵是有用的数据结构:它们允许我们组织具有不同变化模式的数据。例如,我们矩阵中的行可能对应于不同的房屋(数据样本),而列可能对应于不同的属性。因此,尽管单个向量的默认方向是列向量,但在表示表格数据集的矩阵中,将每个数据样本作为矩阵中的行向量更为常见。
张量
张量为我们提供了描述具有任意数量轴的
n
n
n维数组的通用方法。
当我们开始处理图像时,张量将变得更加重要,图像以
n
n
n维数组形式出现,其中3个轴对应于高度、宽度以及一个通道(channel)轴,用于堆叠颜色通道(红色、绿色和蓝色)。现在,我们将跳过高阶张量,集中在基础知识上。
X = torch.arange(24).reshape(2, 3, 4)
tensor([[[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
张量算法的基本性质
- 任何按元素的一元运算都不会改变其操作数的形状。同样,给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量。例如,将两个相同形状的矩阵相加会在这两个矩阵上执行元素的加法。
A = torch.arange(20, dtype=torch.float32).reshape(5,4)
B = A.clone
A, A + B
tensor([[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]]),
tensor([[0, 2, 4, 6],
[8, 10, 12, 14],
[16, 18, 20, 22],
[24, 26, 28, 30],
[32, 34, 36, 38]])
具体而言,两个矩阵按元素乘法称为哈达玛积。
A * B
tensor([[0, 1, 4, 9],
[16, 25, 36, 49],
[64, 81, 100, 121],
[144, 169, 196, 225],
[256, 289, 324, 361]])
将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。
降维
我们可以对任意张量进行一个有用的操作是计算其元素的和。在代码中,我们可以调用计算求和的函数:
x = torch.arange(4, dtype = torch.float32)
x.sum()
tensor(6)
默认的情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。我们还可以指定张量沿哪一个轴来通过求和降低维度。以矩阵为例,为了通过求和所有行的元素来降维(轴0),我们可以在调用函数时指定axis = 0。由于输入矩阵沿着0轴降维以生成输出张量,因此输入的轴0的维数在输出形状中丢失。
A.shape
torch.Size([5, 4])
A_sum_axis0 = A.sum(axis = 0)
A_sum_axis0, A_sum_axis0.shape
tensor([40, 45, 50, 55]), torch.Size([4])
指定axis = 1将通过汇总所有列的元素降维(轴1)。因此,输入的轴1的维数在输出形状中消失。
A_sum_axis1 = A.sum(axis = 1)
A_sum_axis1, A_sum_axis1.shape
tensor([6, 22, 38, 54, 70]), torch.Size([5])
沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。
A.sum(axis=[0, 1])
tensor(190)
一个与求和相关的量是平均值。在代码中,我们可以调用函数来计算任意形状张量的平均值。
|