IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 机器学习——K-近邻算法 -> 正文阅读

[人工智能]机器学习——K-近邻算法

(一)K-近邻算法概述

1. 𝑘 近邻法是基本且简单的分类与回归方法。 𝑘 近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的 𝑘 个最近邻训练实例点,然后利用这 𝑘 个训练实例点的类的多数来预测输入实例点的类。

2. 𝑘 近邻模型对应于基于训练数据集对特征空间的一个划分。 𝑘 近邻法中,当训练集、距离度量、 𝑘 值及分类决策规则确定后,其结果唯一确定。

3. 𝑘 近邻法三要素:距离度量、 𝑘 值的选择和分类决策规则。常用的距离度量是欧氏距离及更一般的pL距离。 𝑘 值小时, 𝑘 近邻模型更复杂; 𝑘 值大时, 𝑘 近邻模型更简单。 𝑘 值的选择反映了对近似误差与估计误差之间的权衡,通常由交叉验证选择最优的 𝑘 。

常用的分类决策规则是多数表决,对应于经验风险最小化。

4. 𝑘 近邻法的实现需要考虑如何快速搜索k个最近邻点,并用分类决策规则确定最终点的归类。


(二)算法步骤
k-近邻算法步骤如下:

计算已知类别数据集中的点与当前点之间的距离;
按照距离递增次序排序;
选取与当前点距离最小的k个点;
确定前k个点所在类别的出现频率;
返回前k个点所出现频率最高的类别作为当前点的预测分类。
? ? ? ? 使用K-近邻算法分类爱情片和动作片,图1-1显示了6部电影的打斗和接吻镜头数。我们可以使用KNN算法,对一部未看过的电影,确定它是爱情片还是动作片。

(三)代码实现?


# -*- coding: UTF-8 -*-
import collections
import numpy as np
def createDataSet():
	#四组二维特征
	group = np.array([[1,101],[5,89],[108,5],[115,8]])
	print(group)
	#四组特征的标签
	labels = ['爱情片','爱情片','动作片','动作片']
	return group, labels
def classify(inx, dataset, labels, k):
	# 计算距离  其实就是计算点一定之间的距离
	dist = np.sum((inx - dataset)**2, axis=1)**0.5

	#print("dist",dist)

	# k个最近的标签
	# dist.argsort 将x中的元素从小到大排列,提取其对应的index(索引)
	k_labels = [labels[index] for index in dist.argsort()[0 : k]]

	print('k_labels', k_labels)
	# 出现次数最多的标签即为最终类别
	#主要功能:可以支持方便、快速的计数,将元素数量统计,然后计数并返回一个字典,键为元素,值为元素个数。
	print('k_labels',collections.Counter(k_labels).most_common(1)[0][0])
	label = collections.Counter(k_labels).most_common(1)[0][0]
	return label

if __name__ == '__main__':
	#创建数据集
	group, labels = createDataSet()
	#测试集
	test = [55,20]
	#kNN分类
	#test_class = classify0(test, group, labels, 3)
	test_class = classify(test, group, labels, 3)
	#打印分类结果
	print(test_class)


(四)总结

优点:

1.k近邻算法理论简单,容易实现。

2.准确性高,对异常值和噪声有较高的容忍度

缺点:

1.k取值很小容易受异常点影响;k取值很小容易受数量波动影响

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-04 12:51:04  更:2021-10-04 12:52:16 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 14:24:39-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码