ResNet极大地改变了如何参数化深层网络中函数的观点。稠密连接网络(DenseNet)在某种程度上是ResNet的逻辑扩展。让我们先从数学上了解下。
从ResNet到DenseNet
回想一下任意函数的泰勒展开式,它把这个函数分解成越来越高阶的项。在
x
x
x接近0时,
f
(
x
)
=
f
(
0
)
+
f
′
(
0
)
x
+
f
′
′
(
0
)
2
!
x
2
+
f
′
′
′
(
0
)
3
!
x
3
+
…
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2 !} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3 !} x^{3}+\ldots
f(x)=f(0)+f′(0)x+2!f′′(0)?x2+3!f′′′(0)?x3+…
同样,ResNet将函数展开为:
f
(
x
)
=
x
+
g
(
x
)
f(\mathbf{x})=\mathbf{x}+g(\mathbf{x})
f(x)=x+g(x)
也就是说,ResNet将
f
f
f分解为两部分:一个简单的线性项和一个更复杂的非线性项。那么再向前扩展一步,如果我们想将
f
f
f扩展成超过两部分的信息呢?一种方案便是DenseNet。
上图中,左边是ResNet,右边是DenseNet,它们在跨层上的主要区别是:使用相加和使用连结。
因此,在应用越来越复杂的函数序列后,我们执行从
x
\mathbf{x}
x到其展开式的映射:
x
→
[
x
,
f
1
(
x
)
,
f
2
(
[
x
,
f
1
(
x
)
]
)
,
f
3
(
[
x
,
f
1
(
x
)
,
f
2
(
[
x
,
f
1
(
x
)
]
)
]
)
,
…
]
\mathbf{x} \rightarrow\left[\mathbf{x}, f_{1}(\mathbf{x}), f_{2}\left(\left[\mathbf{x}, f_{1}(\mathbf{x})\right]\right), f_{3}\left(\left[\mathbf{x}, f_{1}(\mathbf{x}), f_{2}\left(\left[\mathbf{x}, f_{1}(\mathbf{x})\right]\right)\right]\right), \ldots\right]
x→[x,f1?(x),f2?([x,f1?(x)]),f3?([x,f1?(x),f2?([x,f1?(x)])]),…]
最后,将这些展开式结合到多层感知机中,再次减少特征的数量。实现起来非常简单:我们不需要添加术语,而是将它们连接起来。DenseNet这个名字由变量之间的“稠密连接”而得来,最后一层与之前的所有层紧密相连。稠密连接如下图所示:
稠密网络主要由2部分构成:稠密块(dense block)和过渡层(trainsition block)。前者定义如何连接输入和输出,而后者则控制通道数量,使其不会太复杂。
稠密块体
DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构。我们首先实现下这个结构。
import torch
from torch import nn
from d2l import torch as d2l
def conv_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=3, padding=1)
)
一个稠密块由多个卷积块组成,每个卷积块使用相同矢量的输出通道。然而,在前向传播中,我们将每个卷积块的输入和输出在通道维上连结。
class DenseBlock(nn.Module):
def __init__(self, num_convs, input_channels, num_channels):
super(Denseblock, self).__init__()
layer = []
for i in range(num_convs):
layer.append(conv_block(num_channels * i + input_channels, num_channels))
self.net = nn.Sequential(*layer)
def forward(self, X):
for blk in self.net:
Y = blk(X)
X = torch.cat((X, Y), dim=1)
return X
在下面的例子中,我们定义一个有2个输出通道数为10的DenseBlock。使用通道数为3的输入时,我们会得到通道数为
3
+
2
×
10
=
23
3+2\times10=23
3+2×10=23的输出。卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。
blk = DenseBlock(2, 3, 10)
X = torch.randn(4, 3, 8, 8)
Y = blk(X)
Y.shape
torch.Size([4, 23, 8, 8])
过渡层
由于每个稠密快都会带来通道数的增加,使用过多则会过于复杂化模型。而过渡层可以用来控制模型复杂度。它通过
1
×
1
1\times1
1×1卷积层来减小通道数,并使用步幅为2的平均汇聚层减半高和宽,从而进一步降低模型复杂度。
def transition_block(input_channels, num_channels):
return nn.Sequential(
nn.BatchNorm2d(input_channels), nn.ReLU(),
nn.Conv2d(input_channels, num_channels, kernel_size=1)
nn.AvgPool2d(kernel_size=2, stride=2)
)
对上一个例子中稠密块的输出使用通道数为10的过渡层。此时输出的通道数减为10,高和宽均减半。
blk = transition_block(23, 10)
blk(Y).shape
torch.Size([4, 10, 4, 4])
DenseNet模型
我们来构造DenseNet模型。DenseNet首先使用同ResNet一样的单卷积层和最大聚集层。
b1 = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
nn.BatchNorm2d(64), nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
接下来,类似于ResNet使用的4个残差块,DenseNet使用的是4个稠密块。与ResNet类似,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与之前的ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设置为32,所以每个稠密块将增加128个通道。
在每个模块之间,ResNet通过步幅为2的残差块减小高和宽,而DenseNet则使用过渡层来减半高和宽,并减半通道数。
num_channels, growth_rate = 64, 32
num_convs_in_dense_blocks = [4, 4, 4, 4]
blks = []
for i, num_convs in enumerate(num_convs_in_dense_blocks):
blks.append(DenseBlock(num_convs, num_channels, growth_rate))
num_channels += num_convs * growth_rate
if i != len(num_convs_in_dense_blocks) - 1:
blks.append(transition_block(num_channels, num_channels // 2))
num_channels = num_channels // 2
与ResNet类似,最后接上全局汇聚层和全连接层来输出结果。
net = nn.Sequential(
b1, *blks,
nn.BatchNorm2d(num_channels), nn.ReLU(),
nn.AdaptiveMaxPool2d((1, 1)),
nn.Flatten(),
nn.Linear(num_channels, 10)
)
训练模型
由于这里使用了比较深的网络,本节里我们将输入高和宽从224降到96来简化计算。
lr, num_epochs, batch_size = 0.1, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.154, train acc 0.943, test acc 0.880
5506.9 examples/sec on cuda:0
|