IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> torch.nn.functional.cosine_similarity使用详解 -> 正文阅读

[人工智能]torch.nn.functional.cosine_similarity使用详解

概述

根据官网文档的描述,其中 dim表示沿着对应的维度计算余弦相似。那么怎么理解呢?
首先,先介绍下所谓的dim:

a = torch.tensor([[ [1, 2], [3, 4] ], [ [5, 6], [7, 8] ] ], dtype=torch.float)
print(a.shape)
"""
[
    [
        [1, 2],
        [3, 4]
    ],
    [
        [5, 6],
        [7, 8]
    ]
]
"""

在这里插入图片描述

假设有2个矩阵:[[1, 2], [3, 4]] 和 [[5, 6], [7, 8]], 求2者的余弦相似。

按照dim=0求余弦相似:

import torch.nn.functional as F
input1 = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
input2 = torch.tensor([[5, 6], [7, 8]], dtype=torch.float)
output = F.cosine_similarity(input1, input2, dim=0)
print(output)

结果如下:

tensor([0.9558, 0.9839])

那么,这个数值是怎么得来的?是按照

在这里插入图片描述

具体求解如下:

print(F.cosine_similarity(torch.tensor([1,3], dtype=torch.float) , torch.tensor([5,7], dtype=torch.float), dim=0))
print(F.cosine_similarity(torch.tensor([2,4], dtype=torch.float) , torch.tensor([6,8], dtype=torch.float), dim=0))

运行结果如下:

tensor(0.9558)
tensor(0.9839)

可以用scipy.spatial进一步佐证:

from scipy import spatial

dataSetI = [1,3]
dataSetII = [5,7]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果如下:

0.95577900872195

同理:

dataSetI = [2,4]
dataSetII = [6,8]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果如下:

0.9838699100999074

按照dim=1求余弦相似:

output = F.cosine_similarity(input1, input2, dim=1)
print(output)

运行结果如下:

tensor([0.9734, 0.9972])

同理,用用scipy.spatial进一步佐证:

dataSetI = [1,2]
dataSetII = [5,6]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果:0.973417168333576

dataSetI = [3,4]
dataSetII = [7,8]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
print(result)

运行结果:

0.9971641204866132

结果与F.cosine_similarity相符合。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-08 11:48:21  更:2021-10-08 11:49:07 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 10:26:19-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码