整理不易,有条件的点个关注、点个赞呗!感恩各位大哥!
tensorflow简单介绍
tensor采用图运算的方式搭建并训练深度学习网络,该部分使用的库包版本为tensorflow==1.14.0
代码拆分(每个代码块可以放到一个jupyter的cell里)
导入tensorflow及相关包
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
加载数据集、设定批次
mnist = input_data.read_data_sets("MNIST_data",one_hot = True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
定义参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean',mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
tf.summary.scalar('stddev',stddev)
tf.summary.scalar('max',tf.reduce_max(var))
tf.summary.scalar('min',tf.reduce_min(var))
tf.summary.histogram('histogram',var)
定义各类命名空间
with tf.name_scope('input'):
x = tf.placeholder(tf.float32,[None,784],name='x-input')
y = tf.placeholder(tf.float32,[None,10],name='y-input')
with tf.name_scope('layer'):
with tf.name_scope('weight'):
W = tf.Variable(tf.zeros([784,10]),name='W')
variable_summaries(W)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]),name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x,W)+b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
tf.summary.scalar('accuracy',accuracy)
合并所有的summary
merged = tf.summary.merge_all()
定义会话并运算
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/',sess.graph)
for epoch in range(51):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys})
writer.add_summary(summary,epoch)
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter" + str(epoch) + ",Testing Accuracy" + str(acc))
完整代码
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data",one_hot = True)
batch_size = 100
n_batch = mnist.train.num_examples // batch_size
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean',mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
tf.summary.scalar('stddev',stddev)
tf.summary.scalar('max',tf.reduce_max(var))
tf.summary.scalar('min',tf.reduce_min(var))
tf.summary.histogram('histogram',var)
with tf.name_scope('input'):
x = tf.placeholder(tf.float32,[None,784],name='x-input')
y = tf.placeholder(tf.float32,[None,10],name='y-input')
with tf.name_scope('layer'):
with tf.name_scope('weight'):
W = tf.Variable(tf.zeros([784,10]),name='W')
variable_summaries(W)
with tf.name_scope('biases'):
b = tf.Variable(tf.zeros([10]),name='b')
variable_summaries(b)
with tf.name_scope('wx_plus_b'):
wx_plus_b = tf.matmul(x,W)+b
with tf.name_scope('softmax'):
prediction = tf.nn.softmax(wx_plus_b)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
tf.summary.scalar('loss',loss)
with tf.name_scope('train'):
train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
init = tf.global_variables_initializer()
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
tf.summary.scalar('accuracy',accuracy)
merged = tf.summary.merge_all()
with tf.Session() as sess:
sess.run(init)
writer = tf.summary.FileWriter('logs/',sess.graph)
for epoch in range(51):
for batch in range(n_batch):
batch_xs,batch_ys = mnist.train.next_batch(batch_size)
summary,_ = sess.run([merged,train_step],feed_dict={x:batch_xs,y:batch_ys})
writer.add_summary(summary,epoch)
acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
print("Iter" + str(epoch) + ",Testing Accuracy" + str(acc))
可视化
找到文件
运行完成后,就可以在 logs(程序里定义的)文件夹下看到DESKTOP-UN9RU0Q文件。
tensorboard打开
在shell中输入:
tensorboard --logdir=C:\study\baishi\first_stage\tensor1\logs
如下:= 后面为目录文件夹 但是上面是打不开的,他给的地址是http://DES什么,正常为http://127都是数字
此时只需要在后面指定地址即可,即加上--host=127.0.0.1 。
打开后复制地址在浏览器打开,如下:
|