IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 深度学习环境配置记录——RTX3050 -> 正文阅读

[人工智能]深度学习环境配置记录——RTX3050

一、下载

首先需要先了解一下深度学习环境需要的各个软件之间的关系:?从源代码构建 ?|? TensorFlow (google.cn)

然后了解自己的电脑

NVIDIA控制面板中查看显卡驱动,注意这个只是显卡驱动的版本,并不是安装的CUDA的版本。

?也可使用代码来查看

nvida-smi

?表明电脑的CUDA驱动是11.3版本(466.81)

搜索该驱动可以下载的CUDA Toolkit

?我选择了CUDA11.2的版本。搭配cuDNN8.1,Tensorflow2.6.0和Python3.8进行下载和安装。

?

确定软件版本后,到官网下载对应版本的软件

CUDNCUDA Toolkit Archive | NVIDIA Developer

?cuDNNcuDNN Archive | NVIDIA Developer

我一开始选择了CUDA11.3,但是等我按到最后,测试的时候发现不行,就又卸载换成11.2,所以相应的cuDNN也换过来。

其实也可以根据自己的显卡硬件来更新驱动。

?查找自己显卡适合的驱动:Download Drivers | NVIDIA.

?搜索之后下载安装

Pycharm:下载 PyCharm: Python Ide 专业开发人员由捷特布雷因 (jetbrains.com)

?Anaconda:?Anaconda | Individual Edition

二、安装?

Anaconda安装

?记住路径,后面有用

?

?检测Anaconda的安装

#win+R,cmd进入命令行窗口,输入:
conda
activate       #进入conda环境
python         #查看安装python版本
exit()         #退出python 

?

conda create -n py36 python=3.6        #创建虚拟环境
conda remove -n py36 --all             #卸载掉存在的环境

#py36不是必须的,只是试着创建一下环境

?

?

?done就表明建好了虚拟环境py36,可以通过 conda activate py36进入该环境和通过conda deactivate退出该环境。

?CUDA安装

记录了几个重要的步骤

新版本比当前版本低的话就去掉勾选,可以点开每个组件看看。不一定都是下面这样。

?选择安装位置,有一些视频说要保持默认,但也有视频说可以更改路径(以后多CUDA环境时比较方便),这里更改了路径。

?路径下的文件夹设置如下:

?CUDA下面有子文件:

?

?CUDAManager里面包含了下面的子文件:

?

?很明显安装时,对应的组件的位置设置到对应的文件夹中。

?检查CUDA是否安装成功

Cudnn安装

将下载下来的压缩包解压,解压完是下面这个样子:

?复制三个文件到CUDA11_2DevelopmentAndDocumentation中即可

安装PyCharm

应该比较容易,忘截图了。。。。。

安装Tensorflow2.6

pip install tensorflow_gpu==2.6.0 -i https://pypi.douban.com/simple --trusted-host pypi.douban.com

其实在这里碰到了一些问题,总在显示:

ERROR: Could not find a version that satisfies the requirement tensorflow_gpu==2.6.0
ERROR: No matching distribution found for tensorflow_gpu==2.6.0

我以为是tensorflow_gpu版本不合适,试了2.4.0和2.1.0还不行,后来才发现输入错误,没有输入_

最后打开PyCharm运行一段验证代码:

import tensorflow as tf

#查看tensorflow版本
print(tf.__version__)

print('GPU', tf.test.is_gpu_available())

a = tf.constant(2.0)
b = tf.constant(4.0)
print(a + b)

?结果是True就表明成功了。

安装PyTorch

PyTorch官网:Previous PyTorch Versions | PyTorch

找到合适的版本,其实我的CUDA是11.2版本的,在官网看到最新才到11.1,所以就试着安了CUDA11.1对应的PyTorch

最后在PyCharm的终端Terminal窗口输入:

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html

安装大约占用3G大小空间,耐心等一会。

检测安装

import torch
import time
from torch import autograd
#GPU加速
print(torch.__version__)
print(torch.cuda.is_available())

a=torch.randn(10000,1000)
b=torch.randn(1000,10000)
print(a)
print(b)
t0=time.time()
c=torch.matmul(a,b)
t1=time.time()

print(a.device,t1-t0,c.norm(2))

device=torch.device('cuda')
print(device)
a=a.to(device)
b=b.to(device)

t0=time.time()
c=torch.matmul(a,b)
t2=time.time()
print(a.device,t2-t0,c.norm(2))


t0=time.time()
c=torch.matmul(a,b)
t2=time.time()

print(a.device,t2-t0,c.norm(2))

?表示安装成功。

本篇安装记录主要来自:B站up主

的这个视频:【包教包会】Anaconda+Cuda+Cudnn+TensorFlow+Pytorch+Pycharm+Win10深度学习环境配置与卸载,看这一个就够了_哔哩哔哩_bilibili

?感谢up主分享

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-08 11:48:21  更:2021-10-08 11:50:30 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 13:51:51-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码