IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Text completion with GPT-2 step 6-8 -> 正文阅读

[人工智能]自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Text completion with GPT-2 step 6-8

自然语言处理NLP星空智能对话机器人系列:深入理解Transformer自然语言处理 Text completion with GPT-2 step 6-8

Steps 6-7: Intermediate instructions

本文将介绍步骤6、7和7a,它们是进入第8步的中间步骤,我们将定义并激活模型。在模型与控制台交互时将UTF编码的文本打印到控制台,定义UTF-8编码格式:

#@title Step 6: Printing UTF encoded text to the console
!export PYTHONIOENCODING=UTF-8

接下来准备与GPT-2模型进行交互

#@title Step 7: Project Source Code
import os # import after runtime is restarted
#os.chdir("/content/gpt-2/src")
os.chdir("/Chapter06/gpt-2-master/src") 

interactive_conditional_samples.py首先导入所需的必要模块

#@title Step 7a: Interactive Conditional Samples (src)
#Project Source Code for Interactive Conditional Samples:
# /content/gpt-2/src/interactive_conditional_samples.py file 
import json
import os
import numpy as np
import tensorflow as tf

Steps 7b-8: Importing and defining the model

使用interactive_conditional_samples.py与模型交互。

导入三个模块

#@title Step 7b: Importing model sample encoder
import model, sample, encoder
#if following message:
#ModuleNotFoundError: No module named 'tensorflow.contrib'
#then go back and run Step 2 Checking TensorFlow version 

其中:

  • model.py 定义了模型的结构:超参数、多注意力tf.matmul操作、激活函数和所有其他的属性。
  • sample.py 处理交互作用,并控制样本生成,确保标记更有意义。sample.py可以进行Top-k采样及为语言建模激活Top-p采样。
  • encoder.py 使用定义的模型编码器对样本序列进行编码。encoder.json及 vocab.bpe.包含一个BPE编码器和一个文本解码器
#@title Step 8: Defining the model
def interact_model(
    model_name,
    seed,
    nsamples,
    batch_size,
    length,
    temperature,
    top_k,
    models_dir
):
    models_dir = os.path.expanduser(os.path.expandvars(models_dir))
    if batch_size is None:
        batch_size = 1
    assert nsamples % batch_size == 0

    enc = encoder.get_encoder(model_name, models_dir)
    hparams = model.default_hparams()
    with open(os.path.join(models_dir, model_name, 'hparams.json')) as f:
        hparams.override_from_dict(json.load(f))

    if length is None:
        length = hparams.n_ctx // 2
    elif length > hparams.n_ctx:
        raise ValueError("Can't get samples longer than window size: %s" % hparams.n_ctx)

    with tf.Session(graph=tf.Graph()) as sess:
        context = tf.placeholder(tf.int32, [batch_size, None])
        np.random.seed(seed)
        tf.set_random_seed(seed)
        output = sample.sample_sequence(
            hparams=hparams, length=length,
            context=context,
            batch_size=batch_size,
            temperature=temperature, top_k=top_k
        )

        saver = tf.train.Saver()
        ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name))
        saver.restore(sess, ckpt)

        while True:
            raw_text = input("Model prompt >>> ")
            while not raw_text:
                print('Prompt should not be empty!')
                raw_text = input("Model prompt >>> ")
            context_tokens = enc.encode(raw_text)
            generated = 0
            for _ in range(nsamples // batch_size):
                out = sess.run(output, feed_dict={
                    context: [context_tokens for _ in range(batch_size)]
                })[:, len(context_tokens):]
                for i in range(batch_size):
                    generated += 1
                    text = enc.decode(out[i])
                    print("=" * 40 + " SAMPLE " + str(generated) + " " + "=" * 40)
                    print(text)
            print("=" * 80)
  • model.py
import numpy as np
import tensorflow as tf
from tensorflow.contrib.training import HParams

def default_hparams():
    return HParams(
        n_vocab=0,
        n_ctx=1024,
        n_embd=768,
        n_head=12,
        n_layer=12,
    )

def shape_list(x):
    """Deal with dynamic shape in tensorflow cleanly."""
    static = x.shape.as_list()
    dynamic = tf.shape(x)
    return [dynamic[i] if s is None else s for i, s in enumerate(static)]

def softmax(x, axis=-1):
    x = x - tf.reduce_max(x, axis=axis, keepdims=True)
    ex = tf.exp(x)
    return ex / tf.reduce_sum(ex, axis=axis, keepdims=True)

def gelu(x):
    return 0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))

def norm(x, scope, *, axis=-1, epsilon=1e-5):
    """Normalize to mean = 0, std = 1, then do a diagonal affine transform."""
    with tf.variable_scope(scope):
        n_state = x.shape[-1].value
        g = tf.get_variable('g', [n_state], initializer=tf.constant_initializer(1))
        b = tf.get_variable('b', [n_state], initializer=tf.constant_initializer(0))
        u = tf.reduce_mean(x, axis=axis, keepdims=True)
        s = tf.reduce_mean(tf.square(x-u), axis=axis, keepdims=True)
        x = (x - u) * tf.rsqrt(s + epsilon)
        x = x*g + b
        return x

def split_states(x, n):
    """Reshape the last dimension of x into [n, x.shape[-1]/n]."""
    *start, m = shape_list(x)
    return tf.reshape(x, start + [n, m//n])

def merge_states(x):
    """Smash the last two dimensions of x into a single dimension."""
    *start, a, b = shape_list(x)
    return tf.reshape(x, start + [a*b])

def conv1d(x, scope, nf, *, w_init_stdev=0.02):
    with tf.variable_scope(scope):
        *start, nx = shape_list(x)
        w = tf.get_variable('w', [1, nx, nf], initializer=tf.random_normal_initializer(stddev=w_init_stdev))
        b = tf.get_variable('b', [nf], initializer=tf.constant_initializer(0))
        c = tf.reshape(tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, nf]))+b, start+[nf])
        return c

def attention_mask(nd, ns, *, dtype):
    """1's in the lower triangle, counting from the lower right corner.

    Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
    """
    i = tf.range(nd)[:,None]
    j = tf.range(ns)
    m = i >= j - ns + nd
    return tf.cast(m, dtype)


def attn(x, scope, n_state, *, past, hparams):
    assert x.shape.ndims == 3  # Should be [batch, sequence, features]
    assert n_state % hparams.n_head == 0
    if past is not None:
        assert past.shape.ndims == 5  # Should be [batch, 2, heads, sequence, features], where 2 is [k, v]

    def split_heads(x):
        # From [batch, sequence, features] to [batch, heads, sequence, features]
        return tf.transpose(split_states(x, hparams.n_head), [0, 2, 1, 3])

    def merge_heads(x):
        # Reverse of split_heads
        return merge_states(tf.transpose(x, [0, 2, 1, 3]))

    def mask_attn_weights(w):
        # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
        _, _, nd, ns = shape_list(w)
        b = attention_mask(nd, ns, dtype=w.dtype)
        b = tf.reshape(b, [1, 1, nd, ns])
        w = w*b - tf.cast(1e10, w.dtype)*(1-b)
        return w

    def multihead_attn(q, k, v):
        # q, k, v have shape [batch, heads, sequence, features]
        w = tf.matmul(q, k, transpose_b=True)
        w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype))

        w = mask_attn_weights(w)
        w = softmax(w)
        a = tf.matmul(w, v)
        return a

    with tf.variable_scope(scope):
        c = conv1d(x, 'c_attn', n_state*3)
        q, k, v = map(split_heads, tf.split(c, 3, axis=2))
        present = tf.stack([k, v], axis=1)
        if past is not None:
            pk, pv = tf.unstack(past, axis=1)
            k = tf.concat([pk, k], axis=-2)
            v = tf.concat([pv, v], axis=-2)
        a = multihead_attn(q, k, v)
        a = merge_heads(a)
        a = conv1d(a, 'c_proj', n_state)
        return a, present


def mlp(x, scope, n_state, *, hparams):
    with tf.variable_scope(scope):
        nx = x.shape[-1].value
        h = gelu(conv1d(x, 'c_fc', n_state))
        h2 = conv1d(h, 'c_proj', nx)
        return h2


def block(x, scope, *, past, hparams):
    with tf.variable_scope(scope):
        nx = x.shape[-1].value
        a, present = attn(norm(x, 'ln_1'), 'attn', nx, past=past, hparams=hparams)
        x = x + a
        m = mlp(norm(x, 'ln_2'), 'mlp', nx*4, hparams=hparams)
        x = x + m
        return x, present

def past_shape(*, hparams, batch_size=None, sequence=None):
    return [batch_size, hparams.n_layer, 2, hparams.n_head, sequence, hparams.n_embd // hparams.n_head]

def expand_tile(value, size):
    """Add a new axis of given size."""
    value = tf.convert_to_tensor(value, name='value')
    ndims = value.shape.ndims
    return tf.tile(tf.expand_dims(value, axis=0), [size] + [1]*ndims)

def positions_for(tokens, past_length):
    batch_size = tf.shape(tokens)[0]
    nsteps = tf.shape(tokens)[1]
    return expand_tile(past_length + tf.range(nsteps), batch_size)


def model(hparams, X, past=None, scope='model', reuse=False):
    with tf.variable_scope(scope, reuse=reuse):
        results = {}
        batch, sequence = shape_list(X)

        wpe = tf.get_variable('wpe', [hparams.n_ctx, hparams.n_embd],
                             initializer=tf.random_normal_initializer(stddev=0.01))
        wte = tf.get_variable('wte', [hparams.n_vocab, hparams.n_embd],
                             initializer=tf.random_normal_initializer(stddev=0.02))
        past_length = 0 if past is None else tf.shape(past)[-2]
        h = tf.gather(wte, X) + tf.gather(wpe, positions_for(X, past_length))

        # Transformer
        presents = []
        pasts = tf.unstack(past, axis=1) if past is not None else [None] * hparams.n_layer
        assert len(pasts) == hparams.n_layer
        for layer, past in enumerate(pasts):
            h, present = block(h, 'h%d' % layer, past=past, hparams=hparams)
            presents.append(present)
        results['present'] = tf.stack(presents, axis=1)
        h = norm(h, 'ln_f')

        # Language model loss.  Do tokens <n predict token n?
        h_flat = tf.reshape(h, [batch*sequence, hparams.n_embd])
        logits = tf.matmul(h_flat, wte, transpose_b=True)
        logits = tf.reshape(logits, [batch, sequence, hparams.n_vocab])
        results['logits'] = logits
        return results

  • sample.py
import tensorflow as tf

import model

def top_k_logits(logits, k):
    if k == 0:
        # no truncation
        return logits

    def _top_k():
        values, _ = tf.nn.top_k(logits, k=k)
        min_values = values[:, -1, tf.newaxis]
        return tf.where(
            logits < min_values,
            tf.ones_like(logits, dtype=logits.dtype) * -1e10,
            logits,
        )
    return tf.cond(
       tf.equal(k, 0),
       lambda: logits,
       lambda: _top_k(),
    )


def top_p_logits(logits, p):
    """Nucleus sampling"""
    batch, _ = logits.shape.as_list()
    sorted_logits = tf.sort(logits, direction='DESCENDING', axis=-1)
    cumulative_probs = tf.cumsum(tf.nn.softmax(sorted_logits, axis=-1), axis=-1)
    indices = tf.stack([
        tf.range(0, batch),
        # number of indices to include
        tf.maximum(tf.reduce_sum(tf.cast(cumulative_probs <= p, tf.int32), axis=-1) - 1, 0),
    ], axis=-1)
    min_values = tf.gather_nd(sorted_logits, indices)
    return tf.where(
        logits < min_values,
        tf.ones_like(logits) * -1e10,
        logits,
    )


def sample_sequence(*, hparams, length, start_token=None, batch_size=None, context=None, temperature=1, top_k=0, top_p=1):
    if start_token is None:
        assert context is not None, 'Specify exactly one of start_token and context!'
    else:
        assert context is None, 'Specify exactly one of start_token and context!'
        context = tf.fill([batch_size, 1], start_token)

    def step(hparams, tokens, past=None):
        lm_output = model.model(hparams=hparams, X=tokens, past=past, reuse=tf.AUTO_REUSE)

        logits = lm_output['logits'][:, :, :hparams.n_vocab]
        presents = lm_output['present']
        presents.set_shape(model.past_shape(hparams=hparams, batch_size=batch_size))
        return {
            'logits': logits,
            'presents': presents,
        }

    with tf.name_scope('sample_sequence'):
        def body(past, prev, output):
            next_outputs = step(hparams, prev, past=past)
            logits = next_outputs['logits'][:, -1, :]  / tf.to_float(temperature)
            logits = top_k_logits(logits, k=top_k)
            logits = top_p_logits(logits, p=top_p)
            samples = tf.multinomial(logits, num_samples=1, output_dtype=tf.int32)
            return [
                next_outputs['presents'] if past is None else tf.concat([past, next_outputs['presents']], axis=-2),
                samples,
                tf.concat([output, samples], axis=1)
            ]

        past, prev, output = body(None, context, context)

        def cond(*args):
            return True

        _, _, tokens = tf.while_loop(
            cond=cond, body=body,
            maximum_iterations=length - 1,
            loop_vars=[
                past,
                prev,
                output
            ],
            shape_invariants=[
                tf.TensorShape(model.past_shape(hparams=hparams, batch_size=batch_size)),
                tf.TensorShape([batch_size, None]),
                tf.TensorShape([batch_size, None]),
            ],
            back_prop=False,
        )

        return tokens

  • encoder.py
"""Byte pair encoding utilities"""

import os
import json
import regex as re
from functools import lru_cache

@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("?"), ord("?")+1))+list(range(ord("?"), ord("?")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))

def get_pairs(word):
    """Return set of symbol pairs in a word.

    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs

class Encoder:
    def __init__(self, encoder, bpe_merges, errors='replace'):
        self.encoder = encoder
        self.decoder = {v:k for k,v in self.encoder.items()}
        self.errors = errors # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v:k for k, v in self.byte_encoder.items()}
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def encode(self, text):
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def decode(self, tokens):
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text

def get_encoder(model_name, models_dir):
    with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
        encoder = json.load(f)
    with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
        bpe_data = f.read()
    bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
    return Encoder(
        encoder=encoder,
        bpe_merges=bpe_merges,
    )

Copyright 2020, Denis Rothman MIT License. Denis Rothman created the Colab notebook using the OpenAI repository, adding title steps for educational purposes only.

It is important to note that we are running a low-level GPT-2 model 
and not a one-line call to obtain a result. We are also
avoiding pre-packaged versions. We are getting our hands dirty to
understand the architecture of a GPT-2 from scratch. You might get
some deprecation messages. However, the effort is worthwhile.

星空智能对话机器人系列博客

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-08 11:48:21  更:2021-10-08 11:50:49 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 14:15:13-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码