IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 使用 Python 和 OpenCV 进行数据增广 -> 正文阅读

[人工智能]使用 Python 和 OpenCV 进行数据增广

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

874ea3177380d6e45dba08755d806fdc.png

数据扩充是一种增加数据集多样性的技术,无需收集更多真实数据,但仍有助于提高模型精度并防止模型过度拟合。在这篇文章中,我们将学习使用 Python 和 OpenCV 为对象检测任务实现最流行和最有效的数据扩充过程。

即将引入的一组数据扩充方法包括:

  1. 随机裁剪

  2. 断流器

  3. 颜色抖动

  4. 添加噪音

  5. 过滤

首先,让我们导入几个库并准备一些必要的子程序。

import os
import cv2
import numpy as np
import random


def file_lines_to_list(path):
'''
    ### Convert Lines in TXT File to List ###
    path: path to file
    '''
with open(path) as f:
        content = f.readlines()
    content = [(x.strip()).split() for x in content]
return content


def get_file_name(path):
'''
    ### Get Filename of Filepath ###
    path: path to file
    '''
    basename = os.path.basename(path)
    onlyname = os.path.splitext(basename)[0]
return onlyname


def write_anno_to_txt(boxes, filepath):
'''
    ### Write Annotation to TXT File ###
    boxes: format [[obj x1 y1 x2 y2],...]
    filepath: path/to/file.txt
    '''
    txt_file = open(filepath, "w")
for box in boxes:
        print(box[0], int(box[1]), int(box[2]), int(box[3]), int(box[4]), file=txt_file)
    txt_file.close()

下面的图片在这篇文章中用作示例图片。

6f449f7ef4932d31e075d2afc0962823.png

随机裁剪

随机裁剪随机选择一个区域并裁剪出来做一个新的数据样本,裁剪后的区域应该与原始图像具有相同的宽高比以保持物体的形状。

3095488596884581b14ec8113e32c3f8.png

从上图中,左图表示带有真实边界框(红色)的原始图像,右图是通过裁剪橙色框内的区域创建的新样本。在新样本的注释中,去除左图中与橙色框不重叠的所有对象,并细化位于橙色框边界上的对象的坐标以适合新图像样本,原始图像随机裁剪的输出为新裁剪图像及其注释。

def randomcrop(img, gt_boxes, scale=0.5):
'''
    ### Random Crop ###
    img: image
    gt_boxes: format [[obj x1 y1 x2 y2],...]
    scale: percentage of cropped area
    '''


# Crop image
    height, width = int(img.shape[0]*scale), int(img.shape[1]*scale)
    x = random.randint(0, img.shape[1] - int(width))
    y = random.randint(0, img.shape[0] - int(height))
    cropped = img[y:y+height, x:x+width]
    resized = cv2.resize(cropped, (img.shape[1], img.shape[0]))


# Modify annotation
    new_boxes=[]
for box in gt_boxes:
        obj_name = box[0]
        x1 = int(box[1])
        y1 = int(box[2])
        x2 = int(box[3])
        y2 = int(box[4])
        x1, x2 = x1-x, x2-x
        y1, y2 = y1-y, y2-y
        x1, y1, x2, y2 = x1/scale, y1/scale, x2/scale, y2/scale
if (x1<img.shape[1] and y1<img.shape[0]) and (x2>0 and y2>0):
if x1<0: x1=0
if y1<0: y1=0
if x2>img.shape[1]: x2=img.shape[1]
if y2>img.shape[0]: y2=img.shape[0]
            new_boxes.append([obj_name, x1, y1, x2, y2])
return resized, new_boxes

断流器

断流器由Terrance DeVries和Graham W. Taylor在 2017 年在他们的论文中提出,是一种简单的正则化技术,可在训练过程中随机屏蔽输入的方形区域,可用于提高卷积神经网络的鲁棒性和整体性能。这种方法不仅非常容易实现,而且还表明它可以与现有形式的数据扩充和其他正则化工具结合使用,以进一步提高模型性能。

如本文所述,断流器被用于提高图像识别(分类)的准确性,因此,如果我们将相同的方案部署到对象检测数据集中,可能会导致丢失对象的问题,尤其是小对象。下图中,剪切区域(黑色区域)内的大量的小物体被去除了,这不符合数据扩充的目的。

04b880f3826f3b3964cf1fbac4a2ac80.png

为了使这种方式适用于对象检测,我们可以做一个简单的修改,而不是只使用一个掩码并将其放在图像中的随机位置,当我们随机选择一半数量的对象并将断流器应用于这些对象区域时,效果会更好。增强图像如下图中的右图所示。

2b77414b745333c8f744c07914da53a8.png

剪切输出是一张新生成的图像,我们不去除对象或改变图像大小,那么生成的图像的注释与原始图像相同。

def cutout(img, gt_boxes, amount=0.5):
'''
    ### Cutout ###
img: image
gt_boxes: format [[obj x1 y1 x2 y2],...]
amount: num of masks / num of objects 
'''
out = img.copy()
ran_select = random.sample(gt_boxes, round(amount*len(gt_boxes)))


for box in ran_select:
x1 = int(box[1])
y1 = int(box[2])
x2 = int(box[3])
y2 = int(box[4])
mask_w = int((x2 - x1)*0.5)
mask_h = int((y2 - y1)*0.5)
mask_x1 = random.randint(x1, x2 - mask_w)
mask_y1 = random.randint(y1, y2 - mask_h)
mask_x2 = mask_x1 + mask_w
mask_y2 = mask_y1 + mask_h
cv2.rectangle(out, (mask_x1, mask_y1), (mask_x2, mask_y2), (0, 0, 0), thickness=-1)
return out

颜色抖动

颜色抖动是另一种简单类型的图像数据增强,我们可以随机改变图像的亮度、对比度和饱和度。

91c06578c03890d0c557af32fbd9c4cf.png

def colorjitter(img, cj_type="b"):
'''
    ### Different Color Jitter ###
img: image
cj_type: {b: brightness, s: saturation, c: constast}
'''
if cj_type == "b":
        # value = random.randint(-50, 50)
value = np.random.choice(np.array([-50, -40, -30, 30, 40, 50]))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
if value >= 0:
lim = 255 - value
v[v > lim] = 255
v[v <= lim] += value
else:
lim = np.absolute(value)
v[v < lim] = 0
v[v >= lim] -= np.absolute(value)


final_hsv = cv2.merge((h, s, v))
img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)
return img


elif cj_type == "s":
        # value = random.randint(-50, 50)
value = np.random.choice(np.array([-50, -40, -30, 30, 40, 50]))
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)
if value >= 0:
lim = 255 - value
s[s > lim] = 255
s[s <= lim] += value
else:
lim = np.absolute(value)
s[s < lim] = 0
s[s >= lim] -= np.absolute(value)


final_hsv = cv2.merge((h, s, v))
img = cv2.cvtColor(final_hsv, cv2.COLOR_HSV2BGR)
return img


elif cj_type == "c":
brightness = 10
contrast = random.randint(40, 100)
dummy = np.int16(img)
dummy = dummy * (contrast/127+1) - contrast + brightness
dummy = np.clip(dummy, 0, 255)
img = np.uint8(dummy)
return img

添加噪音

在一般意义上,噪声被认为是图像中意想不到的因素,然而,可以利用几种类型的噪声(例如,高斯噪声、脉冲噪声)进行数据增强,在深度学习中添加噪声是一种非常简单和有益的数据增强方法。在下面示例中,为了数据增强,将高斯噪声和脉冲噪声添加到原始图像中。

9aa54b6cbd9beaedfc37d49dc51eaa8b.png

对于那些无法识别高斯噪声和脉冲噪声之间差异的人,高斯噪声的值范围从 0 到 255 ,具体取决于配置,因此,在 RGB 图像中,高斯噪声像素可以是任何颜色。相比之下,脉冲噪声像素只能有两个值 0 或 255,分别为黑色或白色。

def noisy(img, noise_type="gauss"):
'''
    ### Adding Noise ###
    img: image
    cj_type: {gauss: gaussian, sp: salt & pepper}


    '''
if noise_type == "gauss":
        image=img.copy() 
        mean=0
        st=0.7
        gauss = np.random.normal(mean,st,image.shape)
        gauss = gauss.astype('uint8')
        image = cv2.add(image,gauss)
return image


elif noise_type == "sp":
        image=img.copy() 
        prob = 0.05
if len(image.shape) == 2:
            black = 0
            white = 255
else:
            colorspace = image.shape[2]
if colorspace == 3:  # RGB
                black = np.array([0, 0, 0], dtype='uint8')
                white = np.array([255, 255, 255], dtype='uint8')
else:  # RGBA
                black = np.array([0, 0, 0, 255], dtype='uint8')
                white = np.array([255, 255, 255, 255], dtype='uint8')
        probs = np.random.random(image.shape[:2])
        image[probs < (prob / 2)] = black
        image[probs > 1 - (prob / 2)] = white
return image

过滤

过滤是这篇文章中介绍的最后一个数据扩充过程,与添加噪声类似,过滤也很简单且易于实现。实现中使用的三种类型的过滤包括模糊 (平均)、高斯和中值。

506f67897479b181cf7fb7be7e49961c.png

def filters(img, f_type = "blur"):
'''
    ### Filtering ###
    img: image
    f_type: {blur: blur, gaussian: gaussian, median: median}


    '''
if f_type == "blur":
        image=img.copy()
        fsize = 9
return cv2.blur(image,(fsize,fsize))


elif f_type == "gaussian":
        image=img.copy()
        fsize = 9
return cv2.GaussianBlur(image, (fsize, fsize), 0)


elif f_type == "median":
        image=img.copy()
        fsize = 9
return cv2.medianBlur(image, fsize)

总结

880450b62ad8f4c6f7dd80ef6949d9d2.png

Github代码连接:

https://github.com/tranleanh/data-augmentation

好消息,小白学视觉团队的知识星球开通啦,为了感谢大家的支持与厚爱,团队决定将价值149元的知识星球现时免费加入。各位小伙伴们要抓住机会哦!

aaefe874ee2616d3429b94042d576393.png

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三?+?上海交大?+?视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

ff14876cf416a78c6800063565f869cf.png

b719bb9742029319b6f4f8e9c9dcbe64.png

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-09 16:16:59  更:2021-10-09 16:17:08 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 14:09:14-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码