IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 朴素贝叶斯分类器 -> 正文阅读

[人工智能]朴素贝叶斯分类器

朴素贝叶斯分类器

首先要清楚朴素贝叶斯分类器是基于“属性条件独立性假设”,即所有属性相互独立,换句话说就是,假设每个属性独立的对分类结果产生影响。

显然,朴素贝叶斯分类器的训练过程就是基于训练集D来估计类先验概率 P(C),并为每个属性估计条件概率P(xi | c)。说到底,朴素贝叶斯分类器就是由先验概率和条件概率组成。

1、 先验概率

在这里插入图片描述
其中D表示的是总共有多少个样本,Dc表示的是整体样本中c类样本的数量;

2、条件概率

在这里插入图片描述
在该式中,Dc所代表的意思与先验概率相同,即整体样本中c类样本的数量;Dc,xi 表示的是在c类样本的数量中第i个属性取值为xi的样本数量,就比如说:(红)苹果中(脆)苹果的数量。
在这里插入图片描述
其中,μc,i 表示的是第c类样本在第i个属性上取值的均值;σc,i 表示的是第c类样本在第i个属性上取值的方差。

3、举例

下面用一个实例来说明一下:
我们首先先给出训练集和测试数据;
在这里插入图片描述
在这里插入图片描述

首先先计算先验概率;
在这里插入图片描述
然后再计算条件概率;
这个地方需要注意一下,密度和甜度这种程度的属性需要使用概率密度函数来进行计算。
在这里插入图片描述
将好瓜与坏瓜的先验概率和条件概率分别进行累乘。
在这里插入图片描述
然后我们对累乘的结果进行比较,可以很明显看出来是好瓜的概率大于是坏瓜的概率,因此我们测试的瓜系统给出为好瓜。

最后还有一点就是,在累乘的过程中我们也可以看出如果有一个条件概率为零的话,那么我们相乘的结果就为零,那么这样来说就是毫无意义的,然后西瓜书上给出了另一个概念“拉普拉斯平滑”,即在先验概率和条件概率的分子上加一,然后在分母上加上样本的类别数(先验概率)或者某属性的可取值个数(条件概率)。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-09 16:16:59  更:2021-10-09 16:17:28 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 14:28:24-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码