| |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
-> 人工智能 -> 机器学习过拟合与欠拟合! -> 正文阅读 |
|
[人工智能]机器学习过拟合与欠拟合! |
↑↑↑关注后"星标"Datawhale 每日干货?&?每月组队学习,不错过 ?Datawhale干货? 作者:胡联粤、张桐,Datawhale面经小组 Q1 如何理解高方差与低偏差? 模型的预测误差可以分解为三个部分: 偏差(bias), 方差(variance) 和噪声(noise). 偏差 偏差度量了模型的期望预测与真实结果的偏离程度, 即刻画了学习算法本身的拟合能力。偏差则表现为在特定分布上的适应能力,偏差越大越偏离真实值。 方差 方差度量了同样大小的训练集的变动所导致的学习性能的变化, 即刻画了数据扰动所造成的影响。方差越大,说明数据分布越分散。 噪声 噪声表达了在当前任务上任何模型所能达到的期望泛化误差的下界, 即刻画了学习问题本身的难度 。 下图为偏差和方差示意图。 泛化误差、偏差、方差和模型复杂度的关系(图片来源百面机器学习) 参考资料:https://blog.csdn.net/simple_the_best/article/details/71167786 Q2 什么是过拟合和欠拟合,为什么会出现这个现象? 过拟合指的是在训练数据集上表现良好,而在未知数据上表现差。如图所示: 欠拟合指的是模型没有很好地学习到数据特征,不能够很好地拟合数据,在训练数据和未知数据上表现都很差。 过拟合的原因在于:
欠拟合的原因在于:
Q3 怎么解决欠拟合?
Q4 怎么解决过拟合?(重点)
Q5 为什么参数越小代表模型越简单? 因为参数的稀疏,在一定程度上实现了特征的选择。 越复杂的模型,越是会尝试对所有的样本进行拟合,甚至包括一些异常样本点,这就容易造成在较小的区间里预测值产生较大的波动,这种较大的波动也反映了在这个区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,其参数值会比较大。因此参数越少代表模型越简单。 Q6 为什么L1比L2更容易获得稀疏解?(重点) 参考链接:https://www.zhihu.com/question/37096933/answer/475278057 Q7 Dropout为什么有助于过拟合?(重点) 1. 取平均的作用 先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。 这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。 2. 减少神经元之间复杂的共适应关系 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况 。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。 换句话说,假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。 3. Dropout类似于性别在生物进化中的角色 物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。 参考链接:https://zhuanlan.zhihu.com/p/38200980 Q8 Dropout在训练和测试时都需要吗? Dropout在训练时采用,是为了减少神经元对部分上层神经元的依赖,类似将多个不同网络结构的模型集成起来,减少过拟合的风险。而在测试时,应该用整个训练好的模型,因此不需要dropout。 Q9 Dropout如何平衡训练和测试时的差异呢? Dropout 在训练时以一定的概率使神经元失活,实际上就是让对应神经元的输出为0。假设失活概率为 p ,就是这一层中的每个神经元都有p的概率失活。 例如在三层网络结构中,如果失活概率为0.5,则平均每一次训练有3个神经元失活,所以输出层每个神经元只有3个输入,而实际测试时是不会有dropout的,输出层每个神经元都有6个输入。 因此在训练时还要对第二层的输出数据除以(1-p)之后再传给输出层神经元,作为神经元失活的补偿,以使得在训练时和测试时每一层输入有大致相同的期望。 Q10 BN和Dropout共同使用时会出现的问题是什么? BN和Dropout单独使用都能减少过拟合并加速训练速度,但如果一起使用的话并不会产生1+1>2的效果,相反可能会得到比单独使用更差的效果。 参考链接:https://www.zhihu.com/tardis/sogou/art/61725100 Q11 L1 和 L2 正则先验分别服从什么分布? 先验就是优化的起跑线, 有先验的好处就是可以在较小的数据集中有良好的泛化性能,当然这是在先验分布是接近真实分布的情况下得到的了,从信息论的角度看,向系统加入了正确先验这个信息,肯定会提高系统的性能。 L1 正则先验分布是 Laplace 分布,L2 正则先验分布是 Gaussian 分布。 Laplace 分布公式为: Gaussian 分布公式为: 对参数引入高斯正态先验分布相当于L2正则化: 对参数引入拉普拉斯先验等价于 L1正则化: 从上面两图可以看出, L2先验趋向零周围, L1先验趋向零本身。 参考链接:https://blog.csdn.net/akenseren/article/details/80427471 本文来自Datawhale面经项目开源地址: https://github.com/datawhalechina/Daily-interview 长按关注Datawhale,更多开源内容一起学习成长↓ 整理不易,点赞三连↓ |
|
|
上一篇文章 下一篇文章 查看所有文章 |
|
开发:
C++知识库
Java知识库
JavaScript
Python
PHP知识库
人工智能
区块链
大数据
移动开发
嵌入式
开发工具
数据结构与算法
开发测试
游戏开发
网络协议
系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程 数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁 |
360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 | -2024/11/27 10:18:04- |
|
网站联系: qq:121756557 email:121756557@qq.com IT数码 |