IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【机器学习】sklearn实现k-means聚类算法 -> 正文阅读

[人工智能]【机器学习】sklearn实现k-means聚类算法

唠叨两句:

? ? ? ? 数据没有标签但需要分类得时候,不妨考虑进行聚类,先看看情况,如果数据高维复杂,不妨再进行降维处理(主成成分分析法PCA),再进行聚类。

K-Means简单应用实例:

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

# X为样本特征,Y为样本簇类别,共1000个样本,每个样本2个特征,对应x和y轴,共4个簇,
# 簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分别为[0.4, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, n_features=2, centers=[[-1, -1], [0, 0], [1, 1], [2, 2]],
                  cluster_std=[0.4, 0.2, 0.2, 0.2], random_state=9)
                  
plt.scatter(X[:, 0], X[:, 1], marker='o')  # 假设暂不知道y类别,不设置c=y,使用kmeans聚类
plt.show()

?注:?sklearn.datasets常用功能详解?【是个链接】,作为Python中经典的机器学习模块,sklearn围绕着机器学习提供了很多可直接调用的机器学习算法以及很多经典的数据集,本文就对sklearn中专门用来得到已有或自定义数据集的datasets模块进行详细介绍。

????????假设聚类总数为2,设k=2,?代码如下:

from sklearn.cluster import KMeans

y_pred = KMeans(n_clusters=2, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()

from sklearn import metrics
metrics.calinski_harabasz_score(X, y_pred) #越大越好

?详细的看看参考2的链接,写得很到位了,我就简化一下,修改一下他代码的bug。

参考资料:

sklearn.datasets常用功能详解_不二的博客-CSDN博客

[精品]值得star,(●'?'●)

sklearn KMeans聚类算法(总结)_weixin_30500473的博客-CSDN博客

sklearn实现k-means聚类算法_Mekeater的博客-CSDN博客_kmeans sklearn实现

????????

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-11 17:31:30  更:2021-10-11 17:34:02 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 12:57:55-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码