IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 吴恩达深度学习课程笔记——梯度下降算法和向量化 -> 正文阅读

[人工智能]吴恩达深度学习课程笔记——梯度下降算法和向量化

逻辑回归中的梯度下降

梯度下降法的作用是:在测试集上,通过最小化代价函数 J ( w , b ) J(w,b) J(w,b)来训练的参数 w w w b b b
w : = w ? a ? J ( w , b ) ? w w:=w-a\frac{\partial J(w,b)}{\partial w} w:=w?a?w?J(w,b)?
b : = w ? a ? J ( w , b ) ? b b:=w-a\frac{\partial J(w,b)}{\partial b} b:=w?a?b?J(w,b)?
: = := :=表示更新参数
a a a 表示学习率(learning rate),用来控制步长(step
? \partial ? 表示求偏导符号
? J ( w , b ) ? w \frac{\partial J(w,b)}{\partial w} ?w?J(w,b)? J ( w , b ) J(w,b) J(w,b) w w w 求偏导,代码使用 d w dw dw 表示
? J ( w , b ) ? b \frac{\partial J(w,b)}{\partial b} ?b?J(w,b)? J ( w , b ) J(w,b) J(w,b) b b b 求偏导,代码使用 d b db db 表示

单样本梯度下降

回想逻辑回归的公式定义:
z = w T x + b z={{w}^{T}}x+b z=wTx+b
y ^ = a = σ ( z ) = 1 1 + e ? z \hat{y}=a=\sigma (z)=\frac{1}{1+{{e}^{-z}}} y^?=a=σ(z)=1+e?z1?
损失函数: L ( y ^ ( i ) , y ( i ) ) = ? y ( i ) log ? y ^ ( i ) ? ( 1 ? y ( i ) ) log ? ( 1 ? y ^ ( i ) ) L( {{{\hat{y}}}^{(i)}},{{y}^{(i)}})=-{{y}^{(i)}}\log {{\hat{y}}^{(i)}}-(1-{{y}^{(i)}})\log (1-{{\hat{y}}^{(i)}}) L(y^?(i),y(i))=?y(i)logy^?(i)?(1?y(i))log(1?y^?(i))
代价函数: J ( w , b ) = 1 m ∑ i m L ( y ^ ( i ) , y ( i ) ) J\left( w,b \right)=\frac{1}{m}\sum\nolimits_{i}^{m}{L( {{{\hat{y}}}^{(i)}},{{y}^{(i)}})} J(w,b)=m1?im?L(y^?(i),y(i))
假设样本只有两个特征 x 1 {{x}_{1}} x1? x 2 {{x}_{2}} x2?,只考虑一个样本,为了计算 z z z,我们需要输入参数 w 1 {{w}_{1}} w1? w 2 {{w}_{2}} w2? b b b,还有特征值 x 1 {{x}_{1}} x1? x 2 {{x}_{2}} x2?
z = w 1 x 1 + w 2 x 2 + b z={{w}_{1}}{{x}_{1}}+{{w}_{2}}{{x}_{2}}+b z=w1?x1?+w2?x2?+b
L ( a , y ) = ? ( y log ? ( a ) + ( 1 ? y ) log ? ( 1 ? a ) ) L(a,y)=-(y\log (a)+(1-y)\log (1-a)) L(a,y)=?(ylog(a)+(1?y)log(1?a))
其中 a a a是逻辑回归的输出, y y y是样本的标签值。
根据导数链式法则进行反向传播
d a = d L ( a , y ) d a = ? y / a + ( 1 ? y ) / ( 1 ? a ) da=\frac{dL(a,y)}{da}=-y/a+(1-y)/(1-a) da=dadL(a,y)?=?y/a+(1?y)/(1?a)
d a d z = a ? ( 1 ? a ) \frac{da}{dz}=a\cdot (1-a) dzda?=a?(1?a)
所以:
d z = d L ( a , y ) d z = ( d L d a ) ? ( d a d z ) = a ? y dz=\frac{dL(a,y)}{dz}=(\frac{dL}{da})\cdot (\frac{da}{dz})=a-y dz=dzdL(a,y)?=(dadL?)?(dzda?)=a?y
d w 1 = ? L ? w 1 = x 1 ? d z d{{w}_{1}}=\frac{\partial L}{\partial {{w}_{1}}}={{x}_{1}}\cdot dz dw1?=?w1??L?=x1??dz
d w 2 = ? L ? w 2 = x 2 ? d z d{{w}_{2}}=\frac{\partial L}{\partial {{w}_{2}}}={{x}_{2}}\cdot dz dw2?=?w2??L?=x2??dz
d b = d z db=dz db=dz
更新 w 1 = w 1 ? a d w 1 {{w}_{1}}={{w}_{1}}-a d{{w}_{1}} w1?=w1??adw1?
更新 w 2 = w 2 ? a d w 2 {{w}_{2}}={{w}_{2}}-a d{{w}_{2}} w2?=w2??adw2?
更新 b = b ? α d b b=b-\alpha db b=b?αdb
这就是关于单个样本实例的梯度下降算法中参数更新一次的步骤。

向量化

向量化是非常基础的去除代码中for循环的艺术,在深度学习安全领域、深度学习实践中是提高代码运行速度非常关键的技巧。

python中向量化使用的常用指令
import numpy as np 
w= np.array(n(x), 1) 
u=np.zeros(n(x), 1)
c= np.dot(a,b)   #a和b矩阵乘法
u=np.log         #计算对数函数($log$)
u=np.abs()       #计算数据的绝对值
u=np.maximum(v, 0)   #按元素计算$v$中每个元素和和0相比的最大值

矩阵乘法的定义就是: u i = ∑ j A ij v i u_{i} =\sum_{j}^{}{A_{\text{ij}}v_{i}} ui?=j?Aij?vi?,这取决于你怎么定义 u i u_{i} ui?值。同样使用非向量化实现, u = n p . z e r o s ( n , 1 ) u=np.zeros(n,1) u=np.zeros(n,1), 并且通过两层循环 f o r ( i ) : f o r ( j ) : for(i):for(j): for(i):for(j):,得到 u [ i ] = u [ i ] + A [ i ] [ j ] ? v [ j ] u[i]=u[i]+A[i][j]*v[j] u[i]=u[i]+A[i][j]?v[j] 。现在就有了 i i i j j j 的两层循环,这就是非向量化。向量化方式就可以用 u = n p . d o t ( A , v ) u=np.dot(A,v) u=np.dot(A,v),右边这种向量化实现方式,消除了两层循环使得代码运行速度更快。

多样本梯度下降

z = w T x + b z={{w}^{T}}x+b z=wTx+b w w w x x x都是列向量

z = w T X + b = n p . d o t ( w . T , X ) + b z= w^{T}X + b = np.dot( w.T,X)+b z=wTX+b=np.dot(w.T,X)+b
A = σ ( Z ) A = \sigma( Z ) A=σ(Z)
d Z = A ? Y dZ = A - Y dZ=A?Y
d w = 1 m ? X ? d z T ? {{dw} = \frac{1}{m}*X*dz^{T}\ } dw=m1??X?dzT?
d b = 1 m ? n p . s u m ( d Z ) db= \frac{1}{m}*np.sum( dZ) db=m1??np.sum(dZ)
w : = w ? a ? d w w: = w - a*dw w:=w?a?dw
b : = b ? a ? d b b: = b - a*db b:=b?a?db
利用前五个公式完成了前向和后向传播,实现了对所有训练样本进行预测和求导,利用后两个公式,梯度下降更新参数。不使用for循环,通过一次迭代实现一次梯度下降,但如果你希望多次迭代进行梯度下降,那么仍然需要for循环,放在最外层。

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-12 23:26:02  更:2021-10-12 23:27:14 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 12:35:10-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码