IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> TensorFlow 从入门到精通(13)—— NLP初探:电影评论感情分析 -> 正文阅读

[人工智能]TensorFlow 从入门到精通(13)—— NLP初探:电影评论感情分析

终于更新了!这里我们来初探自然语言处理,众所周知,RNN在NLP领域兴风作浪,但是我这里没有用RNN,哈哈哈,所以下一篇就是RNN应用,当然了,最近会更新慢一点,我先努力入党还有各种其余的事情,乱糟糟的感觉。
这篇博客其实我是通过markdown导入的,但是太大了太大了,CSDN扛不住了,所以我就删减了很多输出的内容,没删减前,只能到数据处理的建立字典…包括前面的NLP基础,这些都是很重要的内容。
在人工智能这片领域里,有🌹也有荆棘,希望我能一直走下去吧!
下一篇,RNN我们再会!!

希望大家支持一下我的教程!也希望我粉丝尽快到2k好申请创作身份!感谢家人!!
TensorFlow系统教程
NLP应用的难点在于,如何把输入的字符数值化,神经网络说白了就是一堆数×权重加上偏执项

  • 文本到数值:分词==>词向量==>词嵌入
import tensorflow as tf
tf.__version__
'2.5.0'
tf.test.is_gpu_available()
WARNING:tensorflow:From C:\Users\LENOVO\AppData\Local\Temp/ipykernel_14068/337460670.py:1: is_gpu_available (from tensorflow.python.framework.test_util) is deprecated and will be removed in a future version.
Instructions for updating:
Use `tf.config.list_physical_devices('GPU')` instead.





True

项目介绍

情感分析:又称意见挖掘、倾向性分析,是对带有情感色彩的主观性文本进行分析、处理、归纳和推理的过程。

NLP前置基础:分词

  • 下载jieba库,pip install jieba
  • 这里以中文分词为例
pip install jieba
Note: you may need to restart the kernel to use updated packages.


文件名、目录名或卷标语法不正确。
  • jieba.cut有三个参数,第一个参数是需要分词的字符串,cut_all参数用来控制是否采用全模式;HMM参数用来控制是否使用HMM模型
import jieba
text = 'jupyter是一名非常优秀的AI作者,人帅又好,爱了爱了!'
word_generator = jieba.cut(text)
print(list(word_generator)) # 精确模式
Building prefix dict from the default dictionary ...
Loading model from cache C:\Users\LENOVO\AppData\Local\Temp\jieba.cache
Loading model cost 0.618 seconds.
Prefix dict has been built successfully.


['jupyter', '是', '一名', '非常', '优秀', '的', 'AI', '作者', ',', '人帅', '又', '好', ',', '爱', '了', '爱', '了', '!']
print(list(jieba.cut(text,cut_all=True,HMM=False))) # 全模式
['jupyter', '是', '一名', '非常', '优秀', '的', 'AI', '作者', ',', '人', '帅', '又', '好', ',', '爱', '了', '爱', '了', '!']
print(list(jieba.cut_for_search(text))) # 搜索引擎模式
['jupyter', '是', '一名', '非常', '优秀', '的', 'AI', '作者', ',', '人帅', '又', '好', ',', '爱', '了', '爱', '了', '!']
# 也可以直接返回列表
print(jieba.lcut(text))
['jupyter', '是', '一名', '非常', '优秀', '的', 'AI', '作者', ',', '人帅', '又', '好', ',', '爱', '了', '爱', '了', '!']
print(jieba.lcut_for_search(text))
['jupyter', '是', '一名', '非常', '优秀', '的', 'AI', '作者', ',', '人帅', '又', '好', ',', '爱', '了', '爱', '了', '!']
# 开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词
jieba.load_userdict('字典.txt')
'''
字典.txt内容:
AI作者
爱了爱了
'''
print(jieba.lcut(text))
['jupyter', '是', '一名', '非常', '优秀', '的', 'AI作者', ',', '人帅', '又', '好', ',', '爱了爱了', '!']

一、数据集

1.TF中IMDB预设数据

imdb = tf.keras.datasets.imdb
(train_data,train_labels),(test_data,test_labels) = imdb.load_data()
<__array_function__ internals>:5: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
C:\Users\LENOVO\anaconda3\envs\tf\lib\site-packages\tensorflow\python\keras\datasets\imdb.py:155: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  x_train, y_train = np.array(xs[:idx]), np.array(labels[:idx])
C:\Users\LENOVO\anaconda3\envs\tf\lib\site-packages\tensorflow\python\keras\datasets\imdb.py:156: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
  x_test, y_test = np.array(xs[idx:]), np.array(labels[idx:])
train_data.shape,train_labels.shape,test_data.shape,test_labels.shape
((25000,), (25000,), (25000,), (25000,))
train_labels[0] # 1是正面评论
1

2.自制数据集

  • 这种方法更加现实
  • 基本思路:
  1. 获取数据,确定数据格式规范
  2. 文字分词,英文分词可以按照空格分词,中文分词可以参考jieba
  3. 建立词索引表,给每个词一个数字索引编号
  4. 段落文字转为词索引向量
  5. 段落文字转为词嵌入矩阵
import os
import tarfile
import urllib.request
import numpy as np
import re
from random import randint
# 数据地址
url = 'http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz'
# 数据存放路径
file_path = 'data/aclImdb_v1.tar.gz'

if not os.path.exists('data'):
  os.mkdir('data')
if not os.path.isfile(file_path):
  print('downloading')
  result = urllib.request.urlretrieve(url,filename=file_path)
  print('ok',result)
else:
  print(file_path,'is existed!')
data/aclImdb_v1.tar.gz is existed!
# 解压数据
if not os.path.exists('data/aclImdb'):
  tfile = tarfile.open(file_path,'r:gz')
  print('extracting…')
  result = tfile.extractall('data/') # tfile.extractall('data/')将文件解压到data目录下
  print('ok',result)
else:
  print('data/aclImdb is existed')
data/aclImdb is existed
# 读取数据集,题外话,对re不熟,需要补
# 将文本中不需要的字符清除,如html标签<br/>
def remove_tags(text):
  re_tag = re.compile(r'<[>]+>') # compile 函数用于编译正则表达式,生成一个 Pattern 对象
  return re_tag.sub('',text) # re_tag.sub('',text)将匹配到的字符换成空
# 读取数据集封装成函数
def read_files(file_type):

  # 1)将所有的文件的路径存入file_list,并统计正样本和负样本的个数
  path = 'data/aclImdb/'
  file_list = []
  positive_file_path = path+file_type+'/pos/'
  for f in os.listdir(positive_file_path):
    file_list.append(positive_file_path+f)
  positive_num = len(file_list)
  
  negitave_file_path = path+file_type+'/neg/'
  for f in os.listdir(negitave_file_path):
    file_list.append(negitave_file_path+f)
  negitave_num = len(file_list) - positive_num

  print('read',file_type,':',len(file_list))
  print('positive_num',positive_num)
  print('negitave_num',negitave_num)

  # 2)自己制作标签,因为这个数据集的文件夹名就是特征的标签
  labels = [[1,0]]*positive_num + [[0,1]]*negitave_num # 列表相加会拼接列表,列表×一个数字会重复里面的内容
  # 3)得到所有文本
  features = []
  for fi in file_list:
    with open(fi,'rt',encoding='utf8') as f:
      features+=[remove_tags(''.join(f.readlines()))]

  return features,labels
train_x,train_y = read_files('train')
test_x,test_y = read_files('test')
test_y = np.array(test_y)
train_y = np.array(train_y)
read train : 21247
positive_num 8747
negitave_num 12500
read test : 25000
positive_num 12500
negitave_num 12500
train_x[0] # 特征
'Bromwell High is a cartoon comedy. It ran at the same time as some other programs about school life, such as "Teachers". My 35 years in the teaching profession lead me to believe that Bromwell High\'s satire is much closer to reality than is "Teachers". The scramble to survive financially, the insightful students who can see right through their pathetic teachers\' pomp, the pettiness of the whole situation, all remind me of the schools I knew and their students. When I saw the episode in which a student repeatedly tried to burn down the school, I immediately recalled ......... at .......... High. A classic line: INSPECTOR: I\'m here to sack one of your teachers. STUDENT: Welcome to Bromwell High. I expect that many adults of my age think that Bromwell High is far fetched. What a pity that it isn\'t!'
train_y[0] # 正评论
array([1, 0])

二、数据处理

1.建立字典

token = tf.keras.preprocessing.text.Tokenizer(num_words=4000) # 4000是只统计4000个词汇
token.fit_on_texts(train_x) # 从train_x中建立字典
# 查看token读取了多少文档(文件)
token.document_count
21247
# 将单词映射为它们的排名或者索引
print(token.word_index)
{'the': 1, 'a': 2, 'and': 3, 'of': 4, 'to': 5, 'is': 6, 'br': 7, 'in': 8, 'it': 9, 'i': 10, 'this': 11, 'that': 12, 'was': 13, 'as': 14, 'for': 15, 'movie': 16, 'with': 17, 'but': 18, 'film': 19, 'on': 20, 'not': 21, 'you': 22, 'are': 23, 'his': 24, 'have': 25, 'be': 26, 'he': 27, 'one': 28, 'all': 29, 'at': 30, 'by': 31, 'they': 32, 'an': 33, 'so': 34, 'like': 35, 'who': 36, 'from': 37, 'or': 38, 'just': 39, 'her': 40, 'about': 41, 'if': 42, 'out': 43, ckman': 5828, 'kennedy': 5829, 'net': 5830, 'creek': 5831, 'sniper': 5832, 'beowulf': 5833, 'headache': 5834, 'ariel': 5835, 'programs': 5836, 'insightful': 5837, 'gods': 5838, 'leaders': 5839, 'prominent': 5840, 'files': 5841, 'eleven': 5842, 'choosing': 5843, 'refers': 5844, 'evolution': 5845, 'hepburn': 5846, 'uplifting': 5847, 'triangle': 5848, 'lex': 5849, 'garner': 5850, 'accepts': 5851, 'outright': 5852, 'lasts': 5853, 'representation': 5854, 'teaches': 5855, 'spit': 5856, "anyone's": 5857, 'occasions': 5858, 'hats': 5859, 'popping': 5860, 'survives': 5861, 'studies': 5862, 'tossed': 5863, 'landed': 5864, 'terminator': 5865, 'femme': 5866, 'ish': 5867, 'continually': 5868, 'centre': 5869, 'incidentally': 5870, 'dismal': 5871, 'communicate': 5872, 'caricature': 5873, 'coat': 5874, 'chills': 5875, 'trivia': 5876, 'myth': 5877, '200': 5878, 'respective': 5879, 'damaged': 5880, 'marvel': 5881, 'affairs': 5882, "hitler's": 5883, 'motive': 5884, 'transformed': 5885, 'refuse': 5886, 'breakfast': 5887, 'unattractive': 5888, 'claude': 5889, 'underwear': 5890, 'pacific': 5891, 'misfortune': 5892, 'derivative': 5893, }
# 将单词映射为它们在训练期间所出现的文档或者文本的数量
print(token.word_docs)
defaultdict(<class 'int'>, {'immediately': 363, 'some': 8229, '35': 79, 'right': 2349, 'recalled': 14, "teachers'": 1, 'believe': 1913, 'me': 6291, 'many': 4228, 'student': 271, 'pomp': 7, 'which': 6380, 'welcome': 171, 'school': 1065, 'who': 9377, 'remind': 128, 'inspector': 97, 'than': 6115, 'is': 19060, 'your': 3729, "isn't": 2242, 'situation': 478, 'through': 3449, 'years': 2977, 'of': 20179, 'financially': 20, 'students': 246, 'tried': 639, 'think': 4629, 'time': 7438, 'pettiness': 2, 'closer': 161, 'knew': 699, 'sack': 40, 'programs': 52, 'profession': 53, 'teaching': 68, 'to': 19978, 'high': 1587, 'the': 21072, 'burn': 106, 'their': 5874, 'episode': 836, 'see': 6790, 'insightful': 54, 'one': 11980, 'ran': 184, 'that': 17054, 'far': 2208, 'here': 3620, "high's": 1, 'expect': 924, 'i': 16439, 'my': 6881, 'repeatedly': 95, 'it': 18166, 'adults': 274, 'as': 13603, 'can': 6656, 'cartoon': 318, 'saw': 2319, 'line': 1398, 'pity': 194, 'satire': 183, 'in': 18691, "i'm": 3223, 'same': 2848, 'much': 6082, 'pathetic': 410, 'bromwell': 4, 'all': 11137, 'when': 7652, 'other': 5584, 'down': 2618, 'a': 20532, 'what': 8249, 'schools': 46, 'at': 11099, 'classic': 1247, 'about': 8957, 'such': 3461, 'comedy': 1960, 'lead': 991, 'whole': 2300, 'scramble': 6, 'teachers': 54, 'reality': 666, 'life': 3762, 'and': 20504, 'survive': 181, 'fetched': 85, 'age': 795, 'photography': 320, "i'd": 1016
# 查看Token中词汇出现的次数
print(token.word_counts)
OrderedDict([('bromwell', 8), ('high', 1844), ('is', 90075), ('a', 137721), ('cartoon', 473), ('comedy', 2681), ('it', 67260), ('ran', 191), ('at', 20123), ('the', 283652), ('same', 3488), ('time', 10745), ('as', 39107), ('some', 13483), ('other', 7556), ('programs', 56), ('about', 14798), ('school', 1371), ('life', 5313), ('such', 4403), ('teachers', 59), ('my', 10528), ('35', 80), ('years', 3684), ('in', 78849), ('teaching', 72), ('profession', 57), ('lead', 1105), ('me', 9171), ('to', 115333), ('believe', 2168), ('that', 59452), ("high's", 1), ('satire', 226), ('much', 8375), ('closer', 174), ('reality', 814), ('than', 8513), ('scramble', 6), ('survive', 198), ('financially', 21), ('insightful', 56), ('students', 316), ('who', 17329), ('can', 9386), ('see', 9621), ('right', 2796), ('through', 4307), ('their', 9431), ('pathetic', 441), ("teachers'", 1), ('pomp', 8), ('pettiness', 2), ('of', 122635), ('whole', 2702), ('situation', 530), ('all', 20397), ('remind', 132), ('schools', 53), ('i', 66219), ('knew', 762), ('and', 136984), ('when', 11932), ('saw', 2643), ('episode', 1363), ('which', 10116), ('student', 319), ('repeatedly', 97), ('tried', 703), ('burn', 107), ('down', 3146), ('immediately', 386), ('recalled', 14), ('classic', 1458), ('line', 1613), ('inspector', 146), ("i'm", 4167), ('here', 4749), ('sack', 42), ('one', 22498), ('your', 4963), ('welcome', 179), ('expect', 1018), ('many', 5583), ('adults', 313), ('age', 912), ('think', 6182), ('far', 2591), ('fetched', 90), ('what', 13107), ('pity', 198), ("isn't", 2761), ('liked', 1214), ('film', 32981), ('action', 2839), ('scenes', 4471), ('were', 9332), ('very', 11536), ('interesting', 2666), ('tense', 123), ('well', 8701), ('done', 

2.文字转数字列表(词向量)

train_sequences = token.texts_to_sequences(train_x) # 将文本映射成词向量中的数字,也就是词出现的排名
test_sequences = token.texts_to_sequences(test_x)

3.让转换后的数字列表长度相同

'''
tf.keras.preprocessing.sequence.pad_sequences(train_sequences, 浮点数或整数构成的两层嵌套列表
                                            padding='post',‘pre’或‘post’,确定当需要补0时,在序列的起始还是结尾补0
                                            truncating='post',‘pre’或‘post’,确定当截断序列时,从起始还是结尾截断
                                            maxlen=400),’None或整数,为序列的最大长度。大于此长度的序列将会被截断,小于此长度’会填0
'''
train_x = tf.keras.preprocessing.sequence.pad_sequences(train_sequences,
                                                       padding='post',
                                                       truncating='post',
                                                       maxlen=400)
test_x = tf.keras.preprocessing.sequence.pad_sequences(test_sequences,
                                                       padding='post',
                                                       truncating='post',
                                                       maxlen=400)

三、建模

model = tf.keras.models.Sequential()
# 词嵌入层,这里充当输入层
'''
model.add(tf.keras.layers.Embedding(output_dim=32,输出词向量的维度
                                   input_dim=4000,#输入词汇表的长度,最大词汇数+1
                                   input_length=400)) # 输入Tensor的长度
'''
model.add(tf.keras.layers.Embedding(output_dim=32,
                                   input_dim=4000,
                                   input_length=400))
                                   # 平坦层
model.add(tf.keras.layers.GlobalAveragePooling1D())
# model.add(tf.keras.layers.Flatten())
# 全连接层
model.add(tf.keras.layers.Dense(units=256,activation='relu'))
# 丢弃层,防止过拟合
model.add(tf.keras.layers.Dropout(0.3))
# 输出层
model.add(tf.keras.layers.Dense(units=2,activation='softmax'))
model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, 400, 32)           128000    
_________________________________________________________________
global_average_pooling1d (Gl (None, 32)                0         
_________________________________________________________________
dense (Dense)                (None, 256)               8448      
_________________________________________________________________
dropout (Dropout)            (None, 256)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 514       
=================================================================
Total params: 136,962
Trainable params: 136,962
Non-trainable params: 0
_________________________________________________________________

四、训练

model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
history=model.fit(train_x,train_y,validation_split=0.2,epochs=10,batch_size=128,verbose=1)
Epoch 1/10
133/133 [==============================] - 3s 14ms/step - loss: 0.6625 - accuracy: 0.6158 - val_loss: 0.6072 - val_accuracy: 0.6784
Epoch 2/10
133/133 [==============================] - 2s 12ms/step - loss: 0.3943 - accuracy: 0.8412 - val_loss: 0.3679 - val_accuracy: 0.8511
Epoch 3/10
133/133 [==============================] - 2s 12ms/step - loss: 0.2833 - accuracy: 0.8893 - val_loss: 0.3094 - val_accuracy: 0.8779
Epoch 4/10
133/133 [==============================] - 1s 10ms/step - loss: 0.2439 - accuracy: 0.9038 - val_loss: 0.3789 - val_accuracy: 0.8386
Epoch 5/10
133/133 [==============================] - 1s 11ms/step - loss: 0.2217 - accuracy: 0.9148 - val_loss: 0.2759 - val_accuracy: 0.8934
Epoch 6/10
133/133 [==============================] - 1s 11ms/step - loss: 0.2000 - accuracy: 0.9255 - val_loss: 0.3568 - val_accuracy: 0.8640
Epoch 7/10
133/133 [==============================] - 1s 11ms/step - loss: 0.1890 - accuracy: 0.9283 - val_loss: 0.3279 - val_accuracy: 0.8798
Epoch 8/10
133/133 [==============================] - 1s 11ms/step - loss: 0.1769 - accuracy: 0.9347 - val_loss: 0.3767 - val_accuracy: 0.8619
Epoch 9/10
133/133 [==============================] - 1s 10ms/step - loss: 0.1687 - accuracy: 0.9384 - val_loss: 0.3250 - val_accuracy: 0.8882
Epoch 10/10
133/133 [==============================] - 2s 12ms/step - loss: 0.1610 - accuracy: 0.9430 - val_loss: 0.4318 - val_accuracy: 0.8522
import matplotlib.pyplot as plt
def show_train_history(train_history,train_metrics,val_metrics):
  plt.plot(train_history[train_metrics])
  plt.plot(train_history[val_metrics])
  plt.title('Trian History')
  plt.ylabel(train_metrics)
  plt.xlabel('epoch')
  plt.legend(['trian','validation'],loc='upper left')
  plt.show()
show_train_history(history.history,'loss','val_loss')

在这里插入图片描述

show_train_history(history.history,'accuracy','val_accuracy')

在这里插入图片描述
看这个验证集的准确率和损失一直在波动,而训练集一直在上升,其实就可以大概估计出是有点过拟合的意思了

五、评估和预测

model.evaluate(test_x,test_y,verbose=1) # 0是无,1是进度条,2是一个epoch一个
782/782 [==============================] - 2s 3ms/step - loss: 0.3558 - accuracy: 0.8661
[0.35584765672683716, 0.8661199808120728]
pre = model.predict(test_x)
pre[0]
array([0.97998744, 0.0200126 ], dtype=float32)
# 模型应用,我自己写的
x = ["This is really a junk movie. Jupyter doesn't like it. Thank you! It's really bad"]
x = token.texts_to_sequences(x)
x = tf.keras.preprocessing.sequence.pad_sequences(x,
                                                padding='post',
                                                truncating='post',
                                                maxlen=400)
x
array([[  11,    6,   62,    2, 2356,   16,  147,   35,    9, 1298,   22,
          44,   62,   71,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0,    0,    0,    0,    0,    0,    0,    0,
           0,    0,    0,    0]])
y = model.predict(x)
y
array([[0.44359663, 0.55640334]], dtype=float32)
state = {0:'pos',1:'neg'}
state[np.argmax(y)]
'neg'
  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-13 11:27:11  更:2021-10-13 11:27:28 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 12:47:33-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码