IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> Pytorch入门(一) (李宏毅老师作业一2021年春) -> 正文阅读

[人工智能]Pytorch入门(一) (李宏毅老师作业一2021年春)

本篇代码、数据集来源于李宏毅老师的HW1

数据集地址

参考代码地址

本文通过李老师的第一作业以及提供的参考代码来进行Pytorch入门。本文为入门文,不会涉及具体的网络设计。

当我们想使用数据训练一个模型的时候,其实主要分为两个步骤:读取数据、训练模型。那么我们就按照这个步骤进行pytorch使用入门。

读取模型

1、使用dataset和dataloader来进行数据读取

这是我在参考代码中看到的使用方法,应该也是比较推荐的使用方法。(以下读取已经经过简化,去掉了一些特殊的数据处理)

from torch.utils.data import Dataset, DataLoader
import numpy as np
class COVID19Dataset(Dataset):
    ''' Dataset for loading and preprocessing the COVID19 dataset '''
    def __init__(self,
                 path):
        #根据路径读取所需数据(使用pandas)
        df = pd.read_csv(path)
        #需要将数据转化为pytorch所需的格式
        data = torch.tensor(df.values, dtype=torch.float)
        #第一列为ID,无用数据,去除
        data = data[:,1:]
        #这里可以取所有列,也可以经过一些筛选,只使用有用的列
        feats = list(range(93))
        self.target = data[:, -1]
        self.data = data[:, feats]    


    def __getitem__(self, index):
        # 必须要实现的魔术方法,用于训练模型时返回数据
        return self.data[index], self.target[index]


    def __len__(self):
        # 返回数据长度,后面有使用到这个方法
        return len(self.data)

#再使用dataloader来实现打乱数据,批次读取等效果
batch_size = 100
train_ds = DataLoader(ds, batch_size=batch_size, shuffle=True)
dev_ds = DataLoader(ds, batch_size=batch_size, shuffle=True)

2、更直接地方法

参考文章
也可以不使用,直接自己实现打乱,按批次读取的效果

import pandas as pd
import torch
from torch import nn
path = './ml2021spring-hw1/covid.train.csv'
df = pd.read_csv(path)
dataset_tensor = torch.tensor(df.values, dtype=torch.float)
# 切分训练集 (60%),验证集 (20%) 和测试集 (20%)
random_indices = torch.randperm(dataset_tensor.shape[0])
traning_indices = random_indices[:int(len(random_indices)*0.6)]
validating_indices = random_indices[int(len(random_indices)*0.6):int(len(random_indices)*0.8):]
testing_indices = random_indices[int(len(random_indices)*0.8):]
traning_set_x = dataset_tensor[traning_indices][1:,feats]
traning_set_y = dataset_tensor[traning_indices][1:,-1:]
validating_set_x = dataset_tensor[validating_indices][1:,feats]
validating_set_y = dataset_tensor[validating_indices][1:,-1:]
testing_set_x = dataset_tensor[testing_indices][1:,feats]
testing_set_y = dataset_tensor[testing_indices][1:,-1:]

训练模型

训练模型会比较复杂,具体原理我就不献丑了,只总结步骤。

  1. 训练模型时同一个数据集训练多次(E-poch),一次训练分为多个批次(batch)来进行
  2. 训练模型的时候注意有几种模式。训练模式(train),用于训练模型,使用这个模式时会计算梯度更新参数等,简单讲就是训练时使用这个模式。剩余的模式目前我暂时认为是非训练模式,总的来说就是,使用时不用计算梯度,也不用更新参数。
  3. 选择合适的损失函数,以及相应的优化器,每个批次训练时,使用优化器来根据损失函数来进行参数更新。
for poch in range(e_poch):
    model.train()#训练模式
    for x, y in train_ds:
        optimizer.zero_grad()#0梯度
        pred = model(x)
        mse_loss = model.cal_loss(pred, y.squeeze(-1))
        mse_loss.backward()  
        optimizer.step()

    model.eval()
    total_loss = 0
    for x, y in dev_ds:
        with torch.no_grad():
            pred = model(x)
            mse_loss = model.cal_loss(pred, y.squeeze(-1))
            total_loss += mse_loss
    total_loss = total_loss / len(dev_ds)

    if total_loss < mini_loss:
        mini_loss = total_loss
		print("poch %d find better model,MSE loss is %.4f\n" % (poch, mini_loss))

自己的简化版完整代码

# PyTorch
from torch.utils.data import Dataset, DataLoader

import pandas as pd

import torch
import torch.nn as nn

#这里的模型copy参考代码的,不在本文进行模型建立相关的介绍
class NeuralNet(nn.Module):
    ''' A simple fully-connected deep neural network '''

    def __init__(self, input_dim):
        super(NeuralNet, self).__init__()

        # Define your neural network here
        # TODO: How to modify this model to achieve better performance?
        self.net = nn.Sequential(
            nn.Linear(input_dim, 32),
            nn.BatchNorm1d(32),  # 使用BN,加速模型训练
            nn.Dropout(p=0.2),  # 使用Dropout,减小过拟合,注意不能在BN之前
            nn.LeakyReLU(),  # 更换激活函数
            nn.Linear(32, 1)
        )

        # Mean squared error loss
        self.criterion = nn.MSELoss(reduction='mean')
        # self.criterion = nn.SmoothL1Loss(size_average=True)

    def forward(self, x):
        ''' Given input of size (batch_size x input_dim), compute output of the network '''
        return self.net(x).squeeze(1)

    def cal_loss(self, pred, target):
        ''' Calculate loss '''
        regularization_loss = 0
        for param in self.parameters():
            # TODO: you may implement L1/L2 regularization here
            # 使用L2正则项
            # regularization_loss += torch.sum(abs(param))
            regularization_loss += torch.sum(param ** 2)
        return self.criterion(pred, target) + 0.00075 * regularization_loss


class COVID19Dataset(Dataset):
    def __init__(self, path):
        df = pd.read_csv(path)
        self.data = torch.tensor(df.values, dtype=torch.float)
        self.target = self.data[:, -1:]
        self.data = self.data[:, 1:-1]

    def __getitem__(self, index):
        return self.data[index], self.target[index]

    def __len__(self):
        return len(self.data)


train_path = './ml2021spring-hw1/covid.train.csv'

ds = COVID19Dataset(train_path)
batch_size = 100
train_ds = DataLoader(ds, batch_size=batch_size, shuffle=True)
dev_ds = DataLoader(ds, batch_size=batch_size, shuffle=True)

e_poch = 10000

mini_loss = 1000
early_stop = 500

model = NeuralNet(93)
optimizer = torch.optim.Adam(model.parameters())

for poch in range(e_poch):
    model.train()
    for x, y in train_ds:
        optimizer.zero_grad()
        pred = model(x)
        mse_loss = model.cal_loss(pred, y.squeeze(-1))
        mse_loss.backward()  # TODO
        optimizer.step()

    model.eval()
    total_loss = 0
    for x, y in dev_ds:
        with torch.no_grad():
            pred = model(x)
            mse_loss = model.cal_loss(pred, y.squeeze(-1))
            total_loss += mse_loss
    total_loss = total_loss / len(dev_ds)

    if total_loss < mini_loss:
        stop = 0
        mini_loss = total_loss
        c
    else:
        stop += 1

    if stop > early_stop:
        break

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-18 17:24:05  更:2021-10-18 17:26:00 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 11:03:00-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码