原视频链接:《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili
import numpy as np
import matplotlib.pyplot as plt
x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]
def forward(x):
return x * w
def loss(x, y):
y_pred = forward(x)
return (y_pred - y)**2
w_list = []
mse_list = []
for w in np.arange(0.0, 4.1, 0.1):
print('w=', w)
l_sum = 0
for x_val, y_val in zip(x_data, y_data):
y_pred_val = forward(x_val)
loss_val = loss(x_val, y_val)
l_sum += loss_val
print('\t', x_val, y_val, y_pred_val, loss_val)
print('MSE=', l_sum / 3)
w_list.append(w)
mse_list.append(l_sum / 3)
outfile = open("datafile.txt",'w')
for i in range(len(w_list)):
outfile.write(str(w_list[i]) + " ")
outfile.write("\n")
for i in range(len(mse_list)):
outfile.write(str(mse_list[i]) + " ")
outfile.close()
plt.plot(w_list, mse_list)
plt.xlabel('w')
plt.ylabel('loss')
plt.show()
运行结果图:
代码只用于学习使用,无任何商业意图。
|