IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> OpenCV图像处理--常用图像拼接方法 -> 正文阅读

[人工智能]OpenCV图像处理--常用图像拼接方法

OpenCV常用图像拼接方法(一) :直接拼接

vconcat()—垂直方向拼接,要求待拼接图像有相同的宽度; hconcat()—水平方向拼接,要求待拼接图像有相同的高度。

使用vconcat()和hconcat()拼接则要求待拼接图像有相同的宽度或高度

 	Mat img = imread("girl.jpg");
    vector<Mat>vImgs;
    Mat result;
    vImgs.push_back(img);
    vImgs.push_back(img);
    vconcat(vImgs, result); //垂直方向拼接
    //hconcat(vImgs, result); //水平方向拼接
    imshow("result",result);
    cout << "Hello World!" << endl;
    waitKey(0);

在这里插入图片描述
其他拼接函数

        vector<Mat> images;

        images.push_back(imread("stitch1.jpg"));
        images.push_back(imread("stitch2.jpg"));

        // 设置拼接模式与参数
        Mat result1, result2, result3;
        Stitcher::Mode mode = Stitcher::PANORAMA;
        Ptr<Stitcher> stitcher = Stitcher::create(mode);

        // 拼接方式-多通道融合
        auto blender = detail::Blender::createDefault(detail::Blender::MULTI_BAND);
        stitcher->setBlender(blender);

        // 拼接
        Stitcher::Status status = stitcher->stitch(images, result1);

        // 平面曲翘拼接
        auto plane_warper = makePtr<cv::PlaneWarper>();
        stitcher->setWarper(plane_warper);
        status = stitcher->stitch(images, result2);

        // 鱼眼拼接
        auto fisheye_warper = makePtr<cv::FisheyeWarper>();
        stitcher->setWarper(fisheye_warper);
        status = stitcher->stitch(images, result3);

        // 检查返回
        if (status != Stitcher::OK)
        {
            cout << "Can't stitch images, error code = " << int(status) << endl;
            return EXIT_FAILURE;
        }

        imshow("result1.png", result1);
        imshow("result2.png", result2);
        imshow("result3.png", result3);

         waitKey(0);

图示:
在这里插入图片描述

OpenCV常用图像拼接方法(二) :基于模板匹配拼接

  • 适用范围:图像有重合区域,且待拼接图像之间无明显尺度变化和畸变。
  • 优点:简单、快速(相比于SIFT特征匹配拼接)。
  • 常用实例:两个相邻相机水平拍摄图像拼接。

截取如下两部分ROI作为待拼接图像。
在这里插入图片描述
待拼接图①:
在这里插入图片描述
待拼接图②:

在这里插入图片描述

思路:在图①中截取部分公共区域ROI作为模板,利用模板在图②中匹配,得到最佳匹配位置后计算X和Y方向需要平移的像素距离,将图②对应的拼接到大图中。如下,模板为青色区域:

图片
部分代码和效果如下:

 Mat imgL = imread("A.jpg");
  Mat imgR = imread("B.jpg");
  double start = getTickCount();
  Mat grayL, grayR;
  cvtColor(imgL, grayL, COLOR_BGR2GRAY);
  cvtColor(imgR, grayR, COLOR_BGR2GRAY);

  Rect rectCut = Rect(372, 122, 128, 360);
  Rect rectMatched = Rect(0, 0, imgR.cols / 2, imgR.rows);
  Mat imgTemp = grayL(Rect(rectCut));
  Mat imgMatched = grayR(Rect(rectMatched));

  int width = imgMatched.cols - imgTemp.cols + 1;
  int height = imgMatched.rows - imgTemp.rows + 1;
  Mat matchResult(height, width, CV_32FC1);
  matchTemplate(imgMatched, imgTemp, matchResult, TM_CCORR_NORMED);
  normalize(matchResult, matchResult, 0, 1, NORM_MINMAX, -1);  //归一化到0--1范围

  double minValue, maxValue;
  Point minLoc, maxLoc;
  minMaxLoc(matchResult, &minValue, &maxValue, &minLoc, &maxLoc);

  Mat dstImg(imgL.rows, imgR.cols + rectCut.x - maxLoc.x, CV_8UC3, Scalar::all(0));
  Mat roiLeft = dstImg(Rect(0, 0, imgL.cols, imgL.rows));
  imgL.copyTo(roiLeft);

  Mat debugImg = imgR.clone();
  rectangle(debugImg, Rect(maxLoc.x, maxLoc.y, imgTemp.cols, imgTemp.rows), Scalar(0, 255, 0), 2, 8);
  imwrite("match.jpg", debugImg);

  Mat roiMatched = imgR(Rect(maxLoc.x, maxLoc.y - rectCut.y, imgR.cols - maxLoc.x, imgR.rows - 1 - (maxLoc.y - rectCut.y)));
  Mat roiRight = dstImg(Rect(rectCut.x, 0, roiMatched.cols, roiMatched.rows));

  roiMatched.copyTo(roiRight);

  double end = getTickCount();
  double useTime = (end - start) / getTickFrequency();
  cout << "use-time : " << useTime << "s" << endl;

  imwrite("dst.jpg", dstImg);
  cout << "Done!" << endl;

匹配结果:
在这里插入图片描述
拼接结果:
在这里插入图片描述
OpenCV常用图像拼接方法(三) :SIFT特征匹配拼接方法
特点和适用范围:图像有足够重合相同特征区域,且待拼接图像之间无明显尺度变换和畸变。
优点:适应部分倾斜变化情况。缺点:需要有足够的相同特征区域进行匹配,速度较慢,拼接较大图片容易崩溃。
如下是待拼接的两张图片:
在这里插入图片描述
在这里插入图片描述

特征匹配图:
在这里插入图片描述
拼接结果图:
在这里插入图片描述
拼接缝处理后(拼接处过渡更自然):
在这里插入图片描述

/********************直接图像拼接函数*************************/
bool ImageOverlap0(Mat &img1, Mat &img2)
{
  Mat g1(img1, Rect(0, 0, img1.cols, img1.rows));  // init roi
  Mat g2(img2, Rect(0, 0, img2.cols, img2.rows));
 
  cvtColor(g1, g1, COLOR_BGR2GRAY);
  cvtColor(g2, g2, COLOR_BGR2GRAY);
 
  vector<cv::KeyPoint> keypoints_roi, keypoints_img;  /* keypoints found using SIFT */
  Mat descriptor_roi, descriptor_img;                           /* Descriptors for SIFT */
  FlannBasedMatcher matcher;                                   /* FLANN based matcher to match keypoints */
 
  vector<cv::DMatch> matches, good_matches;
  cv::Ptr<cv::SIFT> sift = cv::SIFT::create();
  int i, dist = 80;
 
  sift->detectAndCompute(g1, cv::Mat(), keypoints_roi, descriptor_roi);      /* get keypoints of ROI image */
  sift->detectAndCompute(g2, cv::Mat(), keypoints_img, descriptor_img);         /* get keypoints of the image */
  matcher.match(descriptor_roi, descriptor_img, matches);  //实现描述符之间的匹配
 
  double max_dist = 0; double min_dist = 5000;
  //-- Quick calculation of max and min distances between keypoints
  for (int i = 0; i < descriptor_roi.rows; i++)
  {
    double dist = matches[i].distance;
    if (dist < min_dist) min_dist = dist;
    if (dist > max_dist) max_dist = dist;
  }
  // 特征点筛选
  for (i = 0; i < descriptor_roi.rows; i++)
  {
    if (matches[i].distance < 3 * min_dist)
    {
      good_matches.push_back(matches[i]);
    }
  }
 
  printf("%ld no. of matched keypoints in right image\n", good_matches.size());
  /* Draw matched keypoints */
 
  Mat img_matches;
  //绘制匹配
  drawMatches(img1, keypoints_roi, img2, keypoints_img,
    good_matches, img_matches, Scalar::all(-1),
    Scalar::all(-1), vector<char>(),
    DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
  imshow("matches", img_matches);
 
  vector<Point2f> keypoints1, keypoints2;
  for (i = 0; i < good_matches.size(); i++)
  {
    keypoints1.push_back(keypoints_img[good_matches[i].trainIdx].pt);
    keypoints2.push_back(keypoints_roi[good_matches[i].queryIdx].pt);
  }
  //计算单应矩阵(仿射变换矩阵)
  Mat H = findHomography(keypoints1, keypoints2, RANSAC);
  Mat H2 = findHomography(keypoints2, keypoints1, RANSAC);
 
 
  Mat stitchedImage;  //定义仿射变换后的图像(也是拼接结果图像)
  Mat stitchedImage2;  //定义仿射变换后的图像(也是拼接结果图像)
  int mRows = img2.rows;
  if (img1.rows > img2.rows)
  {
    mRows = img1.rows;
  }
 
  int count = 0;
  for (int i = 0; i < keypoints2.size(); i++)
  {
    if (keypoints2[i].x >= img2.cols / 2)
      count++;
  }
  //判断匹配点位置来决定图片是左还是右
  if (count / float(keypoints2.size()) >= 0.5)  //待拼接img2图像在右边
  {
    cout << "img1 should be left" << endl;
    vector<Point2f>corners(4);
    vector<Point2f>corners2(4);
    corners[0] = Point(0, 0);
    corners[1] = Point(0, img2.rows);
    corners[2] = Point(img2.cols, img2.rows);
    corners[3] = Point(img2.cols, 0);
    stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
    warpPerspective(img2, stitchedImage, H, Size(img2.cols + img1.cols, mRows));
 
    perspectiveTransform(corners, corners2, H);
    /*
    circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
    circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
    circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
    circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
    cout << corners2[0].x << ", " << corners2[0].y << endl;
    cout << corners2[1].x << ", " << corners2[1].y << endl;
    imshow("temp", stitchedImage);
    //imwrite("temp.jpg", stitchedImage);
 
    Mat half(stitchedImage, Rect(0, 0, img1.cols, img1.rows));
    img1.copyTo(half);
    imshow("result", stitchedImage);
  }
  else  //待拼接图像img2在左边
  {
    cout << "img2 should be left" << endl;
    stitchedImage = Mat::zeros(img2.cols + img1.cols, mRows, CV_8UC3);
    warpPerspective(img1, stitchedImage, H2, Size(img1.cols + img2.cols, mRows));
    imshow("temp", stitchedImage);
 
    //计算仿射变换后的四个端点
    vector<Point2f>corners(4);
    vector<Point2f>corners2(4);
    corners[0] = Point(0, 0);
    corners[1] = Point(0, img1.rows);
    corners[2] = Point(img1.cols, img1.rows);
    corners[3] = Point(img1.cols, 0);
 
    perspectiveTransform(corners, corners2, H2);  //仿射变换对应端点
    /*
    circle(stitchedImage, corners2[0], 5, Scalar(0, 255, 0), 2, 8);
    circle(stitchedImage, corners2[1], 5, Scalar(0, 255, 255), 2, 8);
    circle(stitchedImage, corners2[2], 5, Scalar(0, 255, 0), 2, 8);
    circle(stitchedImage, corners2[3], 5, Scalar(0, 255, 0), 2, 8); */
    cout << corners2[0].x << ", " << corners2[0].y << endl;
    cout << corners2[1].x << ", " << corners2[1].y << endl;
 
    Mat half(stitchedImage, Rect(0, 0, img2.cols, img2.rows));
    img2.copyTo(half);
    imshow("result", stitchedImage);
 
  }
  imwrite("result.bmp", stitchedImage);
  return true;
}

OpenCV常用图像拼接方法(四) :SURF特征匹配拼接方法
参考链接:
https://www.cnblogs.com/skyfsm/p/7411961.html
https://www.cnblogs.com/skyfsm/p/7401523.html

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-21 12:11:36  更:2021-10-21 12:11:51 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 8:41:55-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码