IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> 【PyTorch基础教程13】GoogleNet和ResNet(学不会来打我啊) -> 正文阅读

[人工智能]【PyTorch基础教程13】GoogleNet和ResNet(学不会来打我啊)

作者:token keyword

学习心得

(1)为了解决神经网络随着层数的增加,参数量巨大的问题,GoogleNet利用1×1卷积核,并且分别通过几个不同的卷积核进行处理,有多个相同的模块用Inception类封装;
(2)另一种网络ResNet是为了解决梯度消失(由于在梯度计算的过程中是用的反向传播,所以需要利用链式法则来进行梯度计算,是一个累乘的过程。若每一个地方梯度都是小于1的,累乘后梯度会趋于0)的问题。
(3)构造网络的超参数和input、output的size需要计算好。为了检验网络是否正确,可以先对net简单测试(输入rand的tensor代入),如注释其他层,看前面层的结果和预期的tensor大小是否吻合,即【增量式开发】。

零、简单回顾

上节课主要讲了CNN的架构(如下图的LetNet5),

  • 定义一个卷积层:输入通道数、输出通道数、卷积核的大小(长和宽)。卷积层要求输入输出是四维张量(B,C,W,H),全连接层的输入与输出都是二维张量(B,Input_feature)
  • 卷积(convolution)后,C(Channels)变,W(width)和H(Height)可变可不变,取决于是否padding。subsampling(或pooling)后,C不变,W和H变。
  • 如果要有m个输出channel,就要使用m个卷积核:
    1)每个卷积核的通道数要求和输入通道相同;
    2)卷积核的组数是和输入的通道数相同;
    3)卷积核的大小由自己来定,和图像的大小无关,一般设置为正方形,边长为奇数(其实设置为长方形也是可以的)。

在这里插入图片描述

一、GoogleNet

减少代码冗余:函数or类。从下图的GoogleNet可以看出
在这里插入图片描述

1.1 Inception模块

在这里插入图片描述
(1)最后要拼接在一起,要求每个的宽度和高度一致。走不通路径出来的,(B,C,W,H)唯一可以不同的是channel。

(2)padding可以维持高度和宽度不变;average pooling也可以通过padding和stride使高度和宽度不变。

1.2 1×1卷积核

1×1卷积核能够改变通道数的数量。1×1卷积核个数取决于input的通道数。如下图记得将三个颜色的矩阵相加。

不论input的通道为多少,如下图最后做完1×1卷积后都是从C×W×H变为1×W×H的feature map。
在这里插入图片描述
如果需要变为C’×W×H的feature map,那就将C’组【3个1×1组合起来卷积核】,可以回顾上次讲CNN的多通道卷积运算。

1×1卷积核可以跨越不同通道相同位置的元素值(结果的某个位置可以包含input的所有相同位置的信息,即信息融合)。
在这里插入图片描述

二、可减少参数量的1×1卷积核

(1)下图首先用5×5卷积:每个通道需要拿25个像素进行运算;假如进行padding,则需要对28×28的每个元素都进行运算;每次卷积要对192个通道上进行,这样的运算进行了32次才能得到output。

(2)为了减少参数量,可以使用1×1卷积直接改变通道数,下图可见参数量是第一种的十分之一。
在这里插入图片描述
括号内为output的通道数。
在这里插入图片描述
最后拼接所有块,沿着维度=1(因为从0开始计算,维度分别为B,C,W,H)。

outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, dim = 1)

在这里插入图片描述

三、GoogleNet代码实践

结合上面的googleNet介绍,详看下面代码注释。

# -*- coding: utf-8 -*-
"""
Created on Thu Oct 21 14:10:19 2021

@author: 86493
"""
import torch 
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets 
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim 
import matplotlib.pyplot as plt 

# 准备数据
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize((0.1307,), (0.3081))])
train_dataset = datasets.MNIST(root = '../dataset/mnist/', 
                               train = True,
                               download = True,
                               transform = transform)
train_loader = DataLoader(train_dataset,
                          shuffle = True,
                          batch_size = batch_size)
test_dataset = datasets.MNIST(root = '../dataset/mnist/',
                              train = False,
                              download = True,
                              transform = transform)
test_loader = DataLoader(test_dataset,
                         shuffle = False,
                         batch_size = batch_size)


class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = nn.Conv2d(in_channels, 
                                   16, 
                                   kernel_size = 1)
        self.branch5x5_1 = nn.Conv2d(in_channels,
                                     16,
                                     kernel_size = 1)
        # 为了保证高和宽不变,设置padding
        self.branch5x5_2 = nn.Conv2d(16,
                                     24,
                                     kernel_size = 3,
                                     padding = 1)
        self.branch3x3_1 = nn.Conv2d(in_channels,
                                     16,
                                     kernel_size = 1)
        self.branch3x3_2 = nn.Conv2d(16,
                                     24,
                                     kernel_size = 3,
                                     padding = 1)
        self.branch3x3_3 = nn.Conv2d(24, 
                                     24,
                                     kernel_size = 3,
                                     padding = 1)
        self.branch_pool = nn.Conv2d(in_channels,
                                     24,
                                     kernel_size = 1)
        
    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)
        # 为了保证高和宽不变,设置padding,下面这个没有要学习的参数
        branch_pool = F.avg_pool2d(x,
                                   kernel_size = 3,
                                   stride  = 1,
                                   padding = 1)
        branch_pool = self.branch_pool(branch_pool)
        
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim = 1)
    

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size = 5)
        # 88=24×3+16
        self.conv2 = nn.Conv2d(88, 20, kernel_size = 5)
        
        self.incep1 = InceptionA(in_channels = 10)
        self.incep2 = InceptionA(in_channels = 20)
        
        self.mp = nn.MaxPool2d(2)
        # self.fc = nn.Linear(1408, 10)
        
    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        # 下面这句的output=88
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        # 下面这句的output=88
        x = self.incep2(x)
        # 做全连接,结果是通过flatten得到1408个元素
        x = x.view(in_size, -1)
        print("x.shape:", x.shape)
        # x = self.fc(x)
        return x 


# CNN网络
class Net1(nn.Module):
    def __init__(self):
        super(Net1, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size = 5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size = 5)
        self.pooling = nn.MaxPool2d(2)
        self.fc = nn.Linear(320, 10)
        
    def forward(self, x):
        # Flatten data from (n, 1, 28, 28)to(n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        # flatten
        x = x.view(batch_size, -1)
        # print("x.shape", x.shape)
        x = self.fc(x)
        return x
    
model = Net()
"""
X = torch.rand(4, 1, 28, 28)
model(X) # 打印x.shape: torch.Size([4, 1408])
"""
# print(model)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 有多个显卡时则可以填其他cuda号
model.to(device)
# 把模型的参数等放到显卡中

# 设计损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),
                      lr = 0.01,
                      momentum = 0.5)

def train(epoch):
    running_loss = 0.0 
    for batch_idx, data in enumerate(train_loader, 0):
        # 1.准备数据
        inputs, target = data 
        # 迁移到GPU,注意迁移的device要和模型的device在同一块显卡
        inputs, target = inputs.to(device), target.to(device)
        # 2.前向传递
        outputs = model(inputs)
        loss = criterion(outputs, target)
        # 3.反向传播
        optimizer.zero_grad()
        loss.backward()
        # 4.更新参数
        optimizer.step()
        
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss:%.3f'%
                  (epoch + 1,
                   batch_idx + 1,
                   running_loss / 300))
            running_loss = 0.0
            

def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            # 求出每一行(样本)的最大值的下标,dim = 1即行的维度
            # 返回最大值和最大值所在的下标
            _, predicted = torch.max(outputs.data, dim = 1)
            # label矩阵为N × 1
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        print('accuracy on test set :%d %% ' % (100 * correct / total))
        return correct / total


if __name__ == '__main__':
    epoch_list = []
    acc_list = []
    
    for epoch in range(10):
        train(epoch)
        acc = test()
        epoch_list.append(epoch)
        acc_list.append(acc)
        
    plt.plot(epoch_list, acc_list)
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.show()

结果为99%的准确率,比上次的CNN高了1%。
在这里插入图片描述

[1,   300] loss:0.952
[1,   600] loss:0.216
[1,   900] loss:0.150
accuracy on test set :96 % 
[2,   300] loss:0.112
[2,   600] loss:0.097
[2,   900] loss:0.085
accuracy on test set :97 % 
[3,   300] loss:0.078
[3,   600] loss:0.072
[3,   900] loss:0.063
accuracy on test set :98 % 
[4,   300] loss:0.059
[4,   600] loss:0.057
[4,   900] loss:0.062
accuracy on test set :98 % 
[5,   300] loss:0.049
[5,   600] loss:0.052
[5,   900] loss:0.053
accuracy on test set :98 % 
[6,   300] loss:0.048
[6,   600] loss:0.044
[6,   900] loss:0.045
accuracy on test set :98 % 
[7,   300] loss:0.040
[7,   600] loss:0.047
[7,   900] loss:0.038
accuracy on test set :98 % 
[8,   300] loss:0.035
[8,   600] loss:0.037
[8,   900] loss:0.041
accuracy on test set :98 % 
[9,   300] loss:0.033
[9,   600] loss:0.038
[9,   900] loss:0.035
accuracy on test set :98 % 
[10,   300] loss:0.031
[10,   600] loss:0.031
[10,   900] loss:0.036
accuracy on test set :99 % 

如果打印model也能看到对应的结构:

Net(
  (conv1): Conv2d(1, 10, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(88, 20, kernel_size=(5, 5), stride=(1, 1))
  (incep1): InceptionA(
    (branch1x1): Conv2d(10, 16, kernel_size=(1, 1), stride=(1, 1))
    (branch5x5_1): Conv2d(10, 16, kernel_size=(1, 1), stride=(1, 1))
    (branch5x5_2): Conv2d(16, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (branch3x3_1): Conv2d(10, 16, kernel_size=(1, 1), stride=(1, 1))
    (branch3x3_2): Conv2d(16, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (branch3x3_3): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (branch_pool): Conv2d(10, 24, kernel_size=(1, 1), stride=(1, 1))
  )
  (incep2): InceptionA(
    (branch1x1): Conv2d(20, 16, kernel_size=(1, 1), stride=(1, 1))
    (branch5x5_1): Conv2d(20, 16, kernel_size=(1, 1), stride=(1, 1))
    (branch5x5_2): Conv2d(16, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (branch3x3_1): Conv2d(20, 16, kernel_size=(1, 1), stride=(1, 1))
    (branch3x3_2): Conv2d(16, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (branch3x3_3): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (branch_pool): Conv2d(20, 24, kernel_size=(1, 1), stride=(1, 1))
  )
  (mp): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)

四、残差网络代码实践

在这里插入图片描述
(1)residual block要求输入和输出的tensor维度相同。
(2)有的跳连接在上图汇总是虚线的,表示不一定做跳连接(因为维度不匹配的原因,无法跳跃后相加),所以需要做单独处理——如不做跳连接,或者在跳连接中做一个池化层,注意池化不改变通道数(上面栗子的正路是做一个卷积,起到/2效果)。
在这里插入图片描述
(3)构造网络的超参数和input、output的size需要计算好。为了检验网络是否正确,可以先对net简单测试(输入rand的tensor代入),如注释其他层,看前面层的结果和预期的tensor大小是否吻合,即【增量式开发】。
(4)卷积层中做的事,res是层间做的事。

代码如下,ResidualBlockNet两个类变了,其余和之前没变。

class ResidualBlock(nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = nn.Conv2d(channels,
                               channels,
                               kernel_size = 3,
                               padding = 1)
        self.conv2 = nn.Conv2d(channels,
                               channels,
                               kernel_size = 3,
                               padding = 1)
        
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        # x+y后再relu激活
        return F.relu(x + y)
        
        
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 16, kernel_size = 5)
        self.conv2 = nn.Conv2d(16, 32, kernel_size = 5)
        self.mp = nn.MaxPool2d(2)
        
        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)
            
        self.fc = nn.Linear(512, 10)
        
    def forward(self, x):
        in_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x

在这里插入图片描述

[1,   300] loss:0.524
[1,   600] loss:0.168
[1,   900] loss:0.119
accuracy on test set :97 % 
[2,   300] loss:0.094
[2,   600] loss:0.079
[2,   900] loss:0.072
accuracy on test set :98 % 
[3,   300] loss:0.064
[3,   600] loss:0.059
[3,   900] loss:0.055
accuracy on test set :98 % 
[4,   300] loss:0.049
[4,   600] loss:0.047
[4,   900] loss:0.046
accuracy on test set :98 % 
[5,   300] loss:0.042
[5,   600] loss:0.038
[5,   900] loss:0.038
accuracy on test set :99 % 
[6,   300] loss:0.031
[6,   600] loss:0.036
[6,   900] loss:0.035
accuracy on test set :98 % 
[7,   300] loss:0.031
[7,   600] loss:0.030
[7,   900] loss:0.031
accuracy on test set :98 % 
[8,   300] loss:0.029
[8,   600] loss:0.026
[8,   900] loss:0.026
accuracy on test set :98 % 
[9,   300] loss:0.024
[9,   600] loss:0.022
[9,   900] loss:0.023
accuracy on test set :98 % 
[10,   300] loss:0.020
[10,   600] loss:0.021
[10,   900] loss:0.022
accuracy on test set :99 % 

网络的结果也可以print出来:

Net(
  (conv1): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1))
  (mp): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (rblock1): ResidualBlock(
    (conv1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (conv2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  )
  (rblock2): ResidualBlock(
    (conv1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (conv2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  )
  (fc): Linear(in_features=512, out_features=10, bias=True)
)

更多阅读何恺明大神的论文:
He K, Zhang X, Ren S, et al. Identity Mappings in Deep Residual Networks[C]
Huang G, Liu Z, Laurens V D M, et al. Densely Connected Convolutional Networks[J]. 2016:2261-2269.
在这里插入图片描述

五、PyTorch学习路线

(1)理论,看花书《深度学习》
(2 )通读一遍PyTorch官方文档
(3)复现经典工作(读代码和写代码交叉进行),注意去github下别人论文代码跑通没啥用,要自己复现,不会的再去看别人的代码
(4)扩充视野。基于上面前三个能力,因为复现是一开始很花时间的,现在看别人论文应该脑海有直觉代码大概咋写,看到不会的模块再去看别人代码,吸取精华,把小模块吸收为自己的内容。

Reference

(1)PyTorch 深度学习实践 第10讲,刘二系列
(2)b站视频:https://www.bilibili.com/video/BV1Y7411d7Ys?p=10
(3)官方文档:https://pytorch.org/docs/stable/_modules/torch/nn/modules/conv.html#Conv2d
(4)吴恩达网易云课程:https://study.163.com/my#/smarts
(5)刘洪普老师博客:https://liuii.github.io/
(6)某同学的笔记
(7)pytorch官方文档:https://pytorch.org/docs/stable/index.html
(8)Deep-Learning-with-PyTorch中文版:https://tangshusen.me/Deep-Learning-with-PyTorch-Chinese/#/
(9)神经网络模型(Backbone)
(10)详解残差网络:https://zhuanlan.zhihu.com/p/42706477

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-22 10:56:24  更:2021-10-22 10:56:26 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2024年11日历 -2024/11/27 8:29:03-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码