IT数码 购物 网址 头条 软件 日历 阅读 图书馆
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
图片批量下载器
↓批量下载图片,美女图库↓
图片自动播放器
↓图片自动播放器↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁
 
   -> 人工智能 -> ICP最入门的源码+必看源码 -> 正文阅读

[人工智能]ICP最入门的源码+必看源码

#include <pcl/registration/ia_ransac.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/search/kdtree.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/filter.h>
#include <pcl/registration/icp.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <time.h>

using pcl::NormalEstimation;
using pcl::search::KdTree;
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloud;
int
main(int argc, char** argv)
{
?? ?//加载点云文件
?? ?PointCloud::Ptr cloud_src_o(new PointCloud);//原点云,待配准
?? ?pcl::io::loadPCDFile("C:\\source.pcd", *cloud_src_o);
?? ?PointCloud::Ptr cloud_tgt_o(new PointCloud);//目标点云
?? ?pcl::io::loadPCDFile("C:\\target.pcd", *cloud_tgt_o);

?? ?std::vector<int> indices_src; //保存去除的点的索引
?? ?pcl::removeNaNFromPointCloud(*cloud_src_o, *cloud_src_o, indices_src);
?? ?std::cout << "remove *cloud_src_o nan" << endl;
?? ?//计算表面法线
?? ?pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne_src;
?? ?ne_src.setInputCloud(cloud_src_o);
?? ?pcl::search::KdTree< pcl::PointXYZ>::Ptr tree_src(new pcl::search::KdTree< pcl::PointXYZ>());
?? ?ne_src.setSearchMethod(tree_src);
?? ?pcl::PointCloud<pcl::Normal>::Ptr cloud_src_normals(new pcl::PointCloud< pcl::Normal>);
?? ?ne_src.setKSearch(30);
?? ?ne_src.compute(*cloud_src_normals);

?? ?std::vector<int> indices_tgt;
?? ?pcl::removeNaNFromPointCloud(*cloud_tgt_o, *cloud_tgt_o, indices_tgt);
?? ?std::cout << "remove *cloud_tgt_o nan" << endl;
?? ?pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> ne_tgt;
?? ?ne_tgt.setInputCloud(cloud_tgt_o);
?? ?pcl::search::KdTree< pcl::PointXYZ>::Ptr tree_tgt(new pcl::search::KdTree< pcl::PointXYZ>());
?? ?ne_tgt.setSearchMethod(tree_tgt);
?? ?pcl::PointCloud<pcl::Normal>::Ptr cloud_tgt_normals(new pcl::PointCloud< pcl::Normal>);
?? ?ne_tgt.setKSearch(30);
?? ?ne_tgt.compute(*cloud_tgt_normals);

?? ?
?? ?//icp配准
?? ?PointCloud::Ptr icp_result(new PointCloud);
?? ?pcl::IterativeClosestPoint<pcl::PointXYZ, pcl::PointXYZ> icp;
?? ?icp.setInputSource(cloud_src_o);
?? ?icp.setInputTarget(cloud_tgt_o);
?? ?icp.setMaxCorrespondenceDistance(0.5);
?? ?// 最大迭代次数
?? ?icp.setMaximumIterations(10);

?? ?icp.setTransformationEpsilon(1e-10);// 两次变化矩阵之间的差值
?? ?
?? ?icp.setEuclideanFitnessEpsilon(0.02);// 均方误差前后两次迭代方差的插值
?? ?icp.align(*icp_result);
?? ?Eigen::Matrix4f icp_trans;
?? ?icp_trans = icp.getFinalTransformation();
?? ?pcl::transformPointCloud(*cloud_src_o, *icp_result, icp_trans);//使用创建的变换对未过滤的输入点云进行变换
?? ?//保存转换的输入点云
?? ?*icp_result += *cloud_tgt_o;
?? ?pcl::io::savePCDFileASCII("ICP.pcd", *icp_result);
?? ?std::cout <<"sucessful"<< std::endl;
?? ?getchar();
?? ?return (0);
}

//

#include <boost/make_shared.hpp>// for pcl::make_shared
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/point_representation.h>

#include <pcl/io/pcd_io.h>

#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/filter.h>

#include <pcl/features/normal_3d.h>

#include <pcl/registration/icp.h>
#include <pcl/registration/icp_nl.h>
#include <pcl/registration/transforms.h>

#include <pcl/visualization/pcl_visualizer.h>

using pcl::visualization::PointCloudColorHandlerGenericField;
using pcl::visualization::PointCloudColorHandlerCustom;

//convenient typedefs
typedef pcl::PointXYZ PointT;
typedef pcl::PointCloud<PointT> PointCloud;
typedef pcl::PointNormal PointNormalT;
typedef pcl::PointCloud<PointNormalT> PointCloudWithNormals;

// This is a tutorial so we can afford having global variables?
?? ?//our visualizer
//pcl::visualization::PCLVisualizer *p;
//its left and right viewports
//int vp_1, vp_2;

//convenient structure to handle our pointclouds
struct PCD
{
?? ?PointCloud::Ptr cloud;
?? ?std::string f_name;

?? ?PCD() : cloud(new PointCloud) {};
};

struct PCDComparator
{
?? ?bool operator () (const PCD& p1, const PCD& p2)
?? ?{
?? ??? ?return (p1.f_name < p2.f_name);
?? ?}
};


// Define a new point representation for < x, y, z, curvature >
class MyPointRepresentation : public pcl::PointRepresentation <PointNormalT>
{
?? ?using pcl::PointRepresentation<PointNormalT>::nr_dimensions_;
public:
?? ?MyPointRepresentation()
?? ?{
?? ??? ?// Define the number of dimensions
?? ??? ?nr_dimensions_ = 4;
?? ?}

?? ?// Override the copyToFloatArray method to define our feature vector
?? ?virtual void copyToFloatArray(const PointNormalT &p, float * out) const
?? ?{
?? ??? ?// < x, y, z, curvature >
?? ??? ?out[0] = p.x;
?? ??? ?out[1] = p.y;
?? ??? ?out[2] = p.z;
?? ??? ?out[3] = p.curvature;
?? ?}
};



/** \brief Display source and target on the first viewport of the visualizer
?*
?*/
/*oid showCloudsLeft(const PointCloud::Ptr cloud_target, const PointCloud::Ptr cloud_source)
{
?? ?p->removePointCloud("vp1_target");
?? ?p->removePointCloud("vp1_source");

?? ?PointCloudColorHandlerCustom<PointT> tgt_h(cloud_target, 0, 255, 0);
?? ?PointCloudColorHandlerCustom<PointT> src_h(cloud_source, 255, 0, 0);
?? ?p->addPointCloud(cloud_target, tgt_h, "vp1_target", vp_1);
?? ?p->addPointCloud(cloud_source, src_h, "vp1_source", vp_1);

?? ?PCL_INFO("Press q to begin the registration.\n");
?? ?p->spin();
}*/



/** \brief Display source and target on the second viewport of the visualizer
?*
?*/
//void showCloudsRight(const PointCloudWithNormals::Ptr cloud_target, const PointCloudWithNormals::Ptr cloud_source)
//{
//?? ?p->removePointCloud("source");
//?? ?p->removePointCloud("target");
//
//
//?? ?PointCloudColorHandlerGenericField<PointNormalT> tgt_color_handler(cloud_target, "curvature");
//?? ?if (!tgt_color_handler.isCapable())
//?? ??? ?PCL_WARN("Cannot create curvature color handler!");
//
//?? ?PointCloudColorHandlerGenericField<PointNormalT> src_color_handler(cloud_source, "curvature");
//?? ?if (!src_color_handler.isCapable())
//?? ??? ?PCL_WARN("Cannot create curvature color handler!");
//
//
//?? ?p->addPointCloud(cloud_target, tgt_color_handler, "target", vp_2);
//?? ?p->addPointCloud(cloud_source, src_color_handler, "source", vp_2);
//
//?? ?p->spinOnce();
//}


/** \brief Load a set of PCD files that we want to register together
? * \param argc the number of arguments (pass from main ())
? * \param argv the actual command line arguments (pass from main ())
? * \param models the resultant vector of point cloud datasets
? */
void loadData(int argc, char **argv, std::vector<PCD, Eigen::aligned_allocator<PCD> > &models)
{
?? ?std::string extension(".pcd");
?? ?// Suppose the first argument is the actual test model
?? ?for (int i = 1; i < argc; i++)
?? ?{
?? ??? ?std::string fname = std::string(argv[i]);
?? ??? ?// Needs to be at least 5: .plot
?? ??? ?if (fname.size() <= extension.size())
?? ??? ??? ?continue;

?? ??? ?std::transform(fname.begin(), fname.end(), fname.begin(), (int(*)(int))tolower);

?? ??? ?//check that the argument is a pcd file
?? ??? ?if (fname.compare(fname.size() - extension.size(), extension.size(), extension) == 0)
?? ??? ?{
?? ??? ??? ?// Load the cloud and saves it into the global list of models
?? ??? ??? ?PCD m;
?? ??? ??? ?m.f_name = argv[i];
?? ??? ??? ?pcl::io::loadPCDFile(argv[i], *m.cloud);
?? ??? ??? ?//remove NAN points from the cloud
?? ??? ??? ?std::vector<int> indices;
?? ??? ??? ?pcl::removeNaNFromPointCloud(*m.cloud, *m.cloud, indices);

?? ??? ??? ?models.push_back(m);
?? ??? ?}
?? ?}
}


///官方源码,认真看几遍
/** \brief Align a pair of PointCloud datasets and return the result
? * \param cloud_src the source PointCloud
? * \param cloud_tgt the target PointCloud
? * \param output the resultant aligned source PointCloud
? * \param final_transform the resultant transform between source and target
? */
void pairAlign(const PointCloud::Ptr cloud_src, const PointCloud::Ptr cloud_tgt, PointCloud::Ptr output, Eigen::Matrix4f &final_transform, bool downsample = false)
{
?? ?//
?? ?// Downsample for consistency and speed
?? ?// \note enable this for large datasets
?? ?PointCloud::Ptr src(new PointCloud);
?? ?PointCloud::Ptr tgt(new PointCloud);
?? ?pcl::VoxelGrid<PointT> grid;
?? ?if (downsample)
?? ?{
?? ??? ?grid.setLeafSize(0.9, 0.9, 0.9);
?? ??? ?grid.setInputCloud(cloud_src);
?? ??? ?grid.filter(*src);

?? ??? ?grid.setInputCloud(cloud_tgt);
?? ??? ?grid.filter(*tgt);
?? ?}
?? ?else
?? ?{
?? ??? ?src = cloud_src;
?? ??? ?tgt = cloud_tgt;
?? ?}


?? ?// Compute surface normals and curvature
?? ?PointCloudWithNormals::Ptr points_with_normals_src(new PointCloudWithNormals);
?? ?PointCloudWithNormals::Ptr points_with_normals_tgt(new PointCloudWithNormals);

?? ?pcl::NormalEstimation<PointT, PointNormalT> norm_est;
?? ?pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>());
?? ?norm_est.setSearchMethod(tree);
?? ?norm_est.setKSearch(10);

?? ?norm_est.setInputCloud(src);
?? ?norm_est.compute(*points_with_normals_src);
?? ?pcl::copyPointCloud(*src, *points_with_normals_src);

?? ?norm_est.setInputCloud(tgt);
?? ?norm_est.compute(*points_with_normals_tgt);
?? ?pcl::copyPointCloud(*tgt, *points_with_normals_tgt);

?? ?//
?? ?// Instantiate our custom point representation (defined above) ...
?? ?MyPointRepresentation point_representation;
?? ?// ... and weight the 'curvature' dimension so that it is balanced against x, y, and z
?? ?float alpha[4] = { 1.0, 1.0, 1.0, 1.0 };
?? ?point_representation.setRescaleValues(alpha);

?? ?//
?? ?// Align
?? ?pcl::IterativeClosestPointNonLinear<PointNormalT, PointNormalT> reg;
?? ?reg.setTransformationEpsilon(1e-6);
?? ?// Set the maximum distance between two correspondences (src<->tgt) to 10cm
?? ?// Note: adjust this based on the size of your datasets
?? ?reg.setMaxCorrespondenceDistance(0.6);
?? ?// Set the point representation
?? ?reg.setPointRepresentation(boost::make_shared<const MyPointRepresentation>(point_representation));
?? ?reg.setInputSource(points_with_normals_src);
?? ?reg.setInputTarget(points_with_normals_tgt);

?? ?//
?? ?// Run the same optimization in a loop and visualize the results
?? ?Eigen::Matrix4f Ti = Eigen::Matrix4f::Identity(), prev, targetToSource;
?? ?PointCloudWithNormals::Ptr reg_result = points_with_normals_src;
?? ?reg.setMaximumIterations(1);
?? ?for (int i = 0; i < 3 ;++i)
?? ?{
?? ??? ?PCL_INFO("Iteration Nr. %d.\n", i);

?? ??? ?// save cloud for visualization purpose
?? ??? ?points_with_normals_src = reg_result;

?? ??? ?// Estimate
?? ??? ?reg.setInputSource(points_with_normals_src);
?? ??? ?reg.align(*reg_result);

?? ??? ?//accumulate transformation between each Iteration
?? ??? ?Ti = reg.getFinalTransformation() * Ti;

?? ??? ?//if the difference between this transformation and the previous one
?? ??? ?//is smaller than the threshold, refine the process by reducing
?? ??? ?//the maximal correspondence distance
?? ??? ?if (std::abs((reg.getLastIncrementalTransformation() - prev).sum()) < reg.getTransformationEpsilon())//阈值
?? ??? ??? ?reg.setMaxCorrespondenceDistance(reg.getMaxCorrespondenceDistance() - 0.0001);

?? ??? ?prev = reg.getLastIncrementalTransformation();

?? ??? ?// visualize current state
?? ??? ?//showCloudsRight(points_with_normals_tgt, points_with_normals_src);
?? ?}

?? ?//
? // Get the transformation from target to source
?? ?targetToSource = Ti.inverse();

?? ?//
?? ?// Transform target back in source frame
?? ?pcl::transformPointCloud(*cloud_tgt, *output, targetToSource);

?? ?//p->removePointCloud("source");
?? ?//p->removePointCloud("target");

?? ?//PointCloudColorHandlerCustom<PointT> cloud_tgt_h(output, 0, 255, 0);
?? ?//PointCloudColorHandlerCustom<PointT> cloud_src_h(cloud_src, 255, 0, 0);
?? ?//p->addPointCloud(output, cloud_tgt_h, "target", vp_2);
?? ?//p->addPointCloud(cloud_src, cloud_src_h, "source", vp_2);

?? ?PCL_INFO("Press q to continue the registration.\n");
?? ?//p->spin();

?? ?//p->removePointCloud("source");
?? ?//p->removePointCloud("target");

?? ?//add the source to the transformed target
?? ?*output += *cloud_src;

?? ?final_transform = targetToSource;
}


/* ---[ */
int main123(int argc, char** argv)
{
?? ?// Load data
?? ?std::vector<PCD, Eigen::aligned_allocator<PCD> > data;
?? ?loadData(argc, argv, data);

?? ?// Check user input
?? ?if (data.empty())
?? ?{
?? ??? ?PCL_ERROR("Syntax is: %s <source.pcd> <target.pcd> [*]", argv[0]);
?? ??? ?PCL_ERROR("[*] - multiple files can be added. The registration results of (i, i+1) will be registered against (i+2), etc");
?? ??? ?return (-1);
?? ?}
?? ?PCL_INFO("Loaded %d datasets.", (int)data.size());

?? ?// Create a PCLVisualizer object
?? ?//p = new pcl::visualization::PCLVisualizer(argc, argv, "Pairwise Incremental Registration example");
?? ?//p->createViewPort(0.0, 0, 0.5, 1.0, vp_1);
?? ?//p->createViewPort(0.5, 0, 1.0, 1.0, vp_2);

?? ?PointCloud::Ptr result(new PointCloud), source, target;
?? ?Eigen::Matrix4f GlobalTransform = Eigen::Matrix4f::Identity(), pairTransform;

?? ?for (std::size_t i = 1; i < data.size(); ++i)
?? ?{
?? ??? ?source = data[i - 1].cloud;
?? ??? ?target = data[i].cloud;

?? ??? ?// Add visualization data
?? ??? ?//showCloudsLeft(source, target);

?? ??? ?PointCloud::Ptr temp(new PointCloud);
?? ??? ?PCL_INFO("Aligning %s (%zu) with %s (%zu).\n", data[i - 1].f_name.c_str(), static_cast<std::size_t>(source->size()), data[i].f_name.c_str(), static_cast<std::size_t>(target->size()));
?? ??? ?pairAlign(source, target, temp, pairTransform, true);

?? ??? ?//transform current pair into the global transform
?? ??? ?pcl::transformPointCloud(*temp, *result, GlobalTransform);

?? ??? ?//update the global transform
?? ??? ?GlobalTransform *= pairTransform;

?? ??? ?//save aligned pair, transformed into the first cloud's frame
?? ??? ?std::stringstream ss;
?? ??? ?ss << i << ".pcd";
?? ??? ?pcl::io::savePCDFile(ss.str(), *result, true);

?? ?}
}

  人工智能 最新文章
2022吴恩达机器学习课程——第二课(神经网
第十五章 规则学习
FixMatch: Simplifying Semi-Supervised Le
数据挖掘Java——Kmeans算法的实现
大脑皮层的分割方法
【翻译】GPT-3是如何工作的
论文笔记:TEACHTEXT: CrossModal Generaliz
python从零学(六)
详解Python 3.x 导入(import)
【答读者问27】backtrader不支持最新版本的
上一篇文章      下一篇文章      查看所有文章
加:2021-10-22 10:56:24  更:2021-10-22 10:57:55 
 
开发: C++知识库 Java知识库 JavaScript Python PHP知识库 人工智能 区块链 大数据 移动开发 嵌入式 开发工具 数据结构与算法 开发测试 游戏开发 网络协议 系统运维
教程: HTML教程 CSS教程 JavaScript教程 Go语言教程 JQuery教程 VUE教程 VUE3教程 Bootstrap教程 SQL数据库教程 C语言教程 C++教程 Java教程 Python教程 Python3教程 C#教程
数码: 电脑 笔记本 显卡 显示器 固态硬盘 硬盘 耳机 手机 iphone vivo oppo 小米 华为 单反 装机 图拉丁

360图书馆 购物 三丰科技 阅读网 日历 万年历 2025年1日历 -2025/1/11 10:14:46-

图片自动播放器
↓图片自动播放器↓
TxT小说阅读器
↓语音阅读,小说下载,古典文学↓
一键清除垃圾
↓轻轻一点,清除系统垃圾↓
图片批量下载器
↓批量下载图片,美女图库↓
  网站联系: qq:121756557 email:121756557@qq.com  IT数码